Смекни!
smekni.com

по теме: Горячие источники (стр. 5 из 10)

Советские энергетики показали, что эту трудность можно преодолеть, если совместить работу приливных и речных электростанций, имеющих водохранилища многолетнего регулирования. Ведь энергия рек колеблется по сезонам и из года в год. При спаренной работе ПЭС и ГЭС энергия моря придет на помощь ГЭС в маловодные сезоны и годы, а энергия рек заполнит межсуточные провалы в работе ПЭС [11].

Далеко не в любом районе земного шара есть условия для строительства гидроэлектростанций с водохранилищами многолетнего регулирования. Исследования показали, что передача приливной электроэнергии из прибрежной зоны в центральные части материков будет оправданной для некоторых районов Западной Европы, США, Канады, Южной Америки. В этих районах ПЭС можно объединить с ГЭС, уже имеющими большие водохранилища. В таком комплексном инженерном (капсульные агрегаты) и природно-климатическом (объединенные энергосистемы) подходе лежит ключ к решению проблемы использования приливной энергии. В настоящее время началось практическое освоение энергии приливов. Этому в немалой степени способствовали усилия советских ученых. Их разработки позволили реализовать идею превращения приливной энергии в электрическую в промышленном масштабе [11].

Первая в мире промышленная ПЭС мощностью 240 тыс. кВт построена и введена в действие в 1967 г. во Франции. Она расположена на берегу Ла-Манша, в Бретани, в устье реки Ранс, где величина прилива достигает 13,5 м. Плотина ПЭС пролегает между мысом Бриант на правом берегу с опорой на островок Шалибер. Многолетняя эксплуатация первенца приливной энергетики доказала реальность сооружения, выявила достоинства и недостатки (в частности относительно небольшая мощность) таких станций. В связи с этим во многих странах созданы и продолжают разрабатываться новые проекты мощных и сверхмощных промышленных ПЭС. По определению специалистов, в 23 странах мира имеются подходящие районы для их строительства [11].

Однако, несмотря на множество проектов, промышленные приливные электростанции еще не сооружаются. При всех достоинствах ПЭС (для них не требуется создания водохранилищ, и затопления полезных территорий суши, их работа не загрязняет окружающую среду и т.п.) их доля практически неощутима в современном энергетическом балансе. Однако прогресс в освоении приливной энергии уже отчетливо выражен и перспективе станет более значительным [11].

Использование энергии волн

Ветер возбуждает волновое движение поверхности океанов и морей. Волны и береговой прибой обладают очень большим запасом энергии (См. Приложения 33, 34, 35). Каждый метр гребня волны высотой 3 м, несет в себе 100 кВт энергии, а каждый километр - 1 млн. кВт. По оценкам исследователей США, общая мощность волн Мирового океана равна 90 млрд. кВт.

С давних времен инженерно-техническую мысль человека привлекла идея практического использования столь колоссальных запасов волновой энергии океана. Однако это очень сложная задача, и в масштабах большой энергетики она еще далека от решения [11].

Пока удалось добиться определенных успехов в области применения энергии морских волн для производства электроэнергии, питающей установки малой мощности. Волноэнергетические установки используются для питания электроэнергией маяков, буев, сигнальных морских огней, стационарных океанологических приборов, расположенных далеко от берега, и т.п. По сравнению с обычными электроаккумуляторами, батареями и другими источниками тока они дешевле, надежнее и реже нуждаются в обслуживании. Такое использование энергии волн широко практикуется в Японии, где более 300 буев, маяков и другое оборудование получают питание от таких установок. Волновой электрогенератор успешно эксплуатируется на плавучем маяке Мадрасского порта в Индии. Работы по созданию и усовершенствованию подобных энергетических приборов проводятся в различных странах. Перспективные освоения энергии волн связаны с разработкой совершенных и эффективных устройств большой мощности. В течение последних лет появилось много разных технических проектов их. Так, в Англии энергетиками спроектирован агрегат, вырабатывающий электроэнергию при использовании ударов волн. По мнению проектировщиков, 10 таких агрегатов, установленных на глубине 10 м у западных берегов Великобритании, позволят обеспечить электроэнергией город с населением в 300 тыс. человек [11].

На современном уровне научно- технического развития, а тем более и перспективе, должное внимание к проблеме овладения энергией морских волн, несомненно, позволит сделать ее важной составляющей энергетического потенциала морских стран.

Использование термической энергии

Воды многих районов Мирового океана поглощают большое количество солнечного тепла, большая часть которого аккумулируется в верхних слоях и лишь в небольшой мере распространяется в нижние. Поэтому создаются большие различия температуры поверхностных и глубоколежащих вод. Они особенно хорошо выражены в тропических широтах. В столь значительной разнице температуры колоссальных объемов воды заложены большие энергетические возможности. Их используют в гидротермальных (моретермальных) станциях, по-другому - ПТЭО - системы преобразования тепловой энергии океана.

Первая такая станция была создана в 1927 г. на реке Маас во Франции. В 30-х годах начали строить моретермальную станцию на северо-восточном побережье Бразилии, но после аварии строительство прекратили. Моретермальная станция мощностью 14 тыс. кВт была построена на Атлантическом побережье Африки, близ Абиджана (Берег Слоновой Кости), но из-за технических неполадок она теперь не работает. Разработки проектов ПТЭО ведутся в США, где пытаются создать плавучие варианты таких станций. Усилия специалистов направлены не только на решения технических задач, но и на поиск путей снижения себестоимости оборудования моретермальных станций, для того чтобы увеличить их эффективность. Электроэнергия моретермальных станций должна быть конкурентоспособной по сравнению с электроэнергией других видов электростанций. Действующие ПТЭО находятся в Японии, Майами (США) и на острове Куба [11].

Принцип работы ПТЭО и первые опыты его реализации дают основание полагать, что экономически наиболее целесообразно создавать их в едином энергопромышленном комплексе. Он может включать в себя: выработку электроэнергии, опреснение морской воды, производство поваренной соли, магния, гипса и других химических веществ, создание марикультуры. В этом, вероятно, заключаются основные перспективы развития таких моретермальных станций [11].

Глава V. Ветер

Ветер был первым энергоносителем, который человек сумел приручить и от которого он отказался, перейдя на углеводородное топливо (См. Приложения 36, 39). Почти столетие для ветра не было серьёзной работы. Но пора его бессрочного отпуска подходит к концу: человечество всё активнее пытается избавиться от нефтяной зависимости. И существенную помощь в этом может оказать одна из мощнейших земных стихий [6].

К началу прошлого века в вопросе использования энергии ветра Россия была в числе самых передовых стран. У нас крутилось более 250 тысяч ветряных мельниц, а их общая мощность зашкаливала за гигаватт. В 1918 году русский профессор В. Залевский создал «полную теорию ветряных мельниц». Хотя правильнее было бы назвать эту работу «теорией ветровых двигателей», поскольку собственного мельничного дела, то есть процесса помола зерна, профессор в ней не касался. Зато в теории был сформулирован ряд требований к эффективной ветроустановки. Чуть позже другой известный русский учёный, Николай Жуковский, организовал в основанном им Центральном аэрогидродинамическом институте (ЦАГИ) отдел ветровых двигателей. К этому времени уже стало ясно, что из ветра можно извлекать не только механическую, но и электрическую энергию [6].

Впрочем, совсем отказаться от энергии ветра человек был ещё не готов. В 1931 году недалеко от Ялты заработала спроектированная ЦАГИ крупнейшая в мире промышленная ветровая электростанция (ВЭС) Д – 30 мощностью 100 кВт. В 1934 году под руководством Ю. В. Кондратюка был подготовлен проект гигантской 12 – мегаваттной ВЭС на горе Ай – Петри с башней высотой 165 метров и двумя 80 – метровыми ветроколёсами, размещёнными на двух уровнях. Идею поддержал лично нарком С. Орджоникидзе, и уже в 1936 году в Крыму начались строительные работы. Однако на следующий год, после кончины Орджоникидзе, противники Кондратюка добились сокращения проекта до одноуровневой 5 – мегаваттной установки, а в 1938 году Главэнерго принимает решение прекратить строительство и вообще свернуть любые работы по созданию мощных ВЭС. Всё, что осталось от замысла крымской ветровой суперэлектростанциии – опыт проектирования огромной железобетонной башни, удерживаемой изнутри натянутыми стальными тросами. Спустя три десятка лет эти расчёты пригодились в ходе проектирования Останкинской телебашни [6].

Принятое решение объяснялось не только политическими интригами: интерес к ветру ослабевал повсеместно. Так, в США в 1940 году построили ветроэнергетическую установку мощностью 1250 кВт, которая проработала несколько лет. Когда же одна из лопастей на ней повредилась, ремонтировать её не стали. Оказалось, что установка дизельной электростанции обойдётся дешевле. Темнее менее малые ветрогенераторы (до 30 кВт) продолжали производить. В СССР в 1950–е годы их делали по 9000 штук в год, в основном для северных посёлков и целинных земель. Тогда же на целине была построена ветродизельня электростанция (ВДЭС) мощностью 4000 кВт [6].