В одной из своих последних книг [42] Ж. Пиаже приводит экспериментальные данные о генезисе и формировании у детей (до 12-14 лет) таких элементарных логических структур, как классификация и сериация. Классификация предполагает выполнение операции включения (например, А+А1=В) и операции, ей обратной (В-А1=А). Сериация – это упорядочение предметов в систематические ряды (так, палочки разной длины можно расположить в ряд, каждый член которого больше всех предыдущих и меньше всех последующих).
Анализируя становление классификации, Ж. Пиаже показывают, как от ее исходной формы, от создания «фигурной совокупности», основанной лишь на пространственной близости объектов, дети переходят к классификации, основанной уже на отношении сходства («нефигурные совокупности»), а затем к самой сложной форме – к включению классов, обусловленному связью между объемом и содержанием понятия. Автор специально рассматривает вопрос о формировании классификации не только по одному, но и двум-трем признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов. Аналогичные стадии авторы находят и процессе становления сериации.
Эти исследования преследовали вполне определенную цель – выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способности ума двигаться в прямом и обратном направлении. Обратимость имеет место тогда, когда «операции и действия могут развертываться в двух направлениях, и понимание одного из этих направлений вызывает ipso facto (в силу самого факта) понимание другого» [42, 15].
Обратимость, согласно Ж. Пиаже, представляет фундаментальный закон композиции, свойственный уму. Она имеет две взаимодополняющие и несводимые формы: обращение (инверсия или отрицание) и взаимность. Обращение имеет место, например, в том случае, когда пространственное перемещение предмета из А в В можно аннулировать, переводя обратно предмет из В в А, что в итоге эквивалентно нулевому преобразованию (произведение операции на обратную есть тождественная операция, или нулевое преобразование).
Взаимность (или компенсация) предполагает тот случай, когда, например, при перемещении предмета из А в В предмет так и остается в В, но ребенок сам перемещается из А в В и воспроизводит начальное положение, когда предмет находился против его тела. Движение предмета здесь не аннулировано, но оно компенсировалось путем соответствующего перемещения собственного тела – и это уже другая форма преобразования, нежели обращение [42, 16].
В своих работах Ж. Пиаже показал, что эти преобразования возникают в начале в форме сенсо-моторных схем (с 10-12 мес.). Постепенная координация чувственно-двигательных схем, функциональная символика и языковое отображение приводят к тому, что через ряд этапов обращение и взаимность становятся свойствами интеллектуальных действий (операций) и синтезируются в единой операторной структуре (в период с 7 до 11 и с 12 до 15 лет). Теперь ребенок может координировать все перемещения в одно по двум системам отсчета сразу – одна мобильная, другая неподвижная.
Ж. Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребенка (особенно тех логических операций, которые осуществляют в них предварительные условия) позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими [42, 13]. Так, алгебраическая структура («группа») соответствует операторным механизмом ума, подчиняющимся одной из форм обратимости
· инверсии (отрицанию). Группа имеет четыре элементарных свойства: произведение двух элементов группы также дает элемент группы; прямой операции соответствует одна и только одна обратная; существует операция тождества; последовательные композиции ассоциативны. На языке интеллектуальных действий это означает:
· координация двух систем действия составляет новую схему, присоединяемую к предыдущим;
· операция может развиваться в двух направлениях;
· при возвращении к исходной точке мы находим ее неизменной;
· к одной и той же точке можно прийти разными путями, причем сама точка остается неизменной.
Факты «самостоятельного» развития ребенка (т.е. развития, независимо от прямого влияния школьного обучения) показывают несоответствие порядка этапов геометрии и этапов формирования геометрических понятий у ребенка. Последние приближаются к порядку преемственности основных групп, где топология является первой. У ребенка, по данным Ж. Пиаже, вначале складывается интуиция топологическая, а затем он ориентируется в направлении проективных и метрических структур. Поэтому, в частности, как отмечает Ж. Пиаже, при первых попытках рисования ребенок не различает квадратов, окружностей, треугольников и других метрических фигур, но прекрасно различает фигуры открытые и закрытые, положение «вне» или «внутри» по отношению к границе, разделение и соседство (не различая до поры до времени расстояния) и т. д. ([17],стр. 23).
Рассмотрим основные положения, сформулированные Ж. Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж. Пиаже показывают, что в период дошкольного и школьного детства у ребенка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их отношений. Причем уже на стадии конкретных операций (с 7-8 лет) интеллект ребенка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики.
Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и емкого характера тех стадий умственного развития ребенка, которые связаны с периодом от 2 до 7 и от 7 до 11 лет.
Рассмотрение результатов, полученных Ж. Пиаже, позволяет сделать ряд существенных выводов применительно к конструированию учебной программы по математике. Прежде всего фактические данные о формировании интеллекта ребенка с 2 до 11 лет говорят о том, что ему в это время не только не «чужды» свойства объектов, описываемые посредством математических понятий «отношение – структура» но последние сами органически входят в мышление ребенка.
Традиционные программы не учитывают этого обстоятельства. Поэтому они не реализуют многих возможностей, таящихся в процессе интеллектуального развития ребенка.
Материалы, имеющиеся в современной детской психологии, позволяют положительно оценивать общую идею построения такого учебного предмета, в основе которого лежали бы понятия об исходных математических структурах. Конечно, на этом пути возникают большие трудности, так как еще нет опыта построения такого учебного предмета. В частности, одна из них связана с определением возрастного «порога», с которого осуществимо обучение по новой программе. Если следовать логике Ж. Пиаже, то, видимо, по этим программам можно учить лишь тогда, когда у детей уже полностью сформировались операторные структуры (с 14-15 лет). Но если предположить, что реальное математическое мышление ребенка формируется как раз внутри того процесса, который обозначается Ж. Пиаже как процесс складывания операторных структур, то эти программы можно вводить гораздо раньше (например, с 7-8 лет), когда у детей начинают формироваться конкретные операции с высшим уровнем обратимости. В «естественных» условиях, при обучении по традиционным программам формальные операции, возможно, только и складываются к 13-15 годам. Но нельзя ли «ускорить» их формирование путем более раннего введения такого учебного материала, усвоение которого требует прямого анализа математических структур?
Представляется, что такие возможности есть. К 7-8 годам у детей уже в достаточной мере развит план мыслительных действий, и путем обучения по соответствующей программе, в которой свойства математических структур даны «явно» и детям даются средства их анализа, можно быстрее подвести детей к уровню «формальных» операций, чем в те сроки, в которые это осуществляется при «самостоятельном» открытии этих свойств.
При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж. Пиаже к 7-11 годам, сами неразрывно связаны с формами организации обучения, свойственными традиционной начальной школе. Это обучение (и у нас, и за рубежом) ведется на основе предельно эмпирического содержания, зачастую вообще нем связанного с понятийным (теоретическим) отношением к объекту. Такое обучение поддерживает и закрепляет у детей мышление, опирающееся на внешние, прямым восприятием уловимые признаки вещей.
Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь структур детского мышления и обще алгебраических структур, хотя «механизм» этой связи далеко не ясен и почти не исследован. Наличие этой связи открывает принципиальные возможности (пока лишь возможности!) для построения учебного предмета, развертывающегося по схеме «от простых структур – к их сложным сочетаниям». Одним из условий реализации этих возможностей является изучение перехода к опосредованному мышлению и его возрастных нормативов. Указанный способ построения математики как учебного предмета сам может быть мощным рычагом формирования у детей такого мышления, которое опирается на достаточно прочный понятийный фундамент.
Глава 2. Методика введения систем счисления в начальной школе.
2.1. Преемственность в изучении систем счисления в курсах математики и информатики в начальной школе