Другой проблемой на первоначальных стадиях проектирования самолета является оценка аэродинамического качества. Ключевым моментом в определении качества является статистическая оценка коэффициента сопротивления при нулевой подъемной силе. В рассматриваемых методах предложены разные подходы. Наиболее простой и, возможно, наименее точный представлен в методике Реймера. Коэффициент сопротивления определяется на основе отношения площади омываемой поверхности самолета к теоретической площади крыла (см. ПРИЛОЖЕНИЕ Е). В методике Егера предложена статистическая формула (1.1.7). В методике Торенбика для оценки коэффициента сопротивления также используются статистические формулы (1.2.19 - 1.2.23). Результаты расчетов коэффициента сопротивления при нулевой подъемной силе представлены в ПРИЛОЖЕНИИ Е.
Также в ПРИЛОЖЕНИИ Е представлены результаты расчетов аэродинамического качества самолета на максимальном и крейсерском режиме. На основании расчетов можем сделать вывод, что наиболее точные результаты позволяет получить методика по Торенбику. В данной методике используется статистический метод оценки сопротивления самолета в зависимости от размеров самолета и двигателей. Как мы видим, для типовых схем самолетов, рассматриваемых в данной дипломной работе, он дает приемлемые результаты, но для новых необычных проектов расхождения могут быть велики.
В данной дипломной работе расчеты проводились для реальных значений аэродинамического качества, которые представлены в ПРИЛОЖЕНИИ Е.
Как было сказано выше, методики по Реймеру и Торенбику были разработаны по аналогии с методикой Егера. В соответствии с методикой Егера предусматривается следующий порядок расчета параметров самолета: первоначально определяется удельная нагрузка на крыло, затем тяговооруженность самолета и в зависимости от массы полезной нагрузки и снаряжения определяются взлетная масса самолета в первом и втором приближениях.
Разработанная на основе материалов /4/ методика по Торенбику предполагает следующий порядок действий: определение удельной нагрузки на крыло в зависимости от предполагаемого значения взлетной массы (предварительное значение взлетной массы необходимо для расчета нагрузки на крыло по условию обеспечения взлета самолета). Затем на основе выбранного значения удельной нагрузки на крыло проводится расчет тяговооруженности самолета. Следующий шаг заключается в определении взлетной массы в первом приближении в зависимости от массы полезной нагрузки и снаряжения. Процесс определения взлетной массы самолета и нагрузки на крыло итерационный, и если предполагаемое значение массы и расчетное значительно отличаются, то необходимо сделать перерасчет с новой предполагаемой взлетной массой. После определения основных геометрических параметров самолета проводится расчет массы самолета во втором приближении.
Порядок действий в методике по Реймеру соответствует очередности изложения материала в /5/. В первую очередь определяется предварительное значение тяговооруженности при неизвестной нагрузке на крыло, затем на основе полученного значения тяговооруженности вычисляется удельная нагрузка на крыло, которая используется для расчета итогового значения тяговооруженности из условия набора высоты при отказавшем двигателе. На следующем этапе расчетов проводится проверка выполнения требований к величине удельной нагрузки на крыло с новым значением тяговооруженности. После определения основных параметров самолета проводится расчет массы самолета в первом и втором приближениях.
2.2 Анализ полученных результатов
2.2.1 Результаты оценки удельной нагрузки на крыло
Реальные значения удельной нагрузки на крыло для рассматриваемых прототипов имеют следующие значения: для Ту-154
В соответствии с методой Егера были получены следующие результаты: для проекта по прототипу Ту-154
Для проекта по прототипу Ту-204
Для проекта по прототипу Ил-96-300
Методика по Торенбику позволяет получить следующие значения удельной нагрузки на крыло: для проекта по прототипу Ту-154
В соответствии с методикой Реймера получаем следующие величины удельной нагрузки на крыло: для проекта по прототипу Ту-154
Мы видим, что методика Реймера дает явно заниженные результаты по всем проектам самолетов. Следует заметить, что во всех случаях критическим условием является обеспечение крейсерского полета. Значения удельной нагрузки, полученные в соответствии с данным условием, являются оптимальными для условий крейсерского режима, на практике же можно пожертвовать минимальным сопротивлением в условиях крейсерского полета с тем, чтобы рациональные характеристики проектируемого самолета. Таким образом, мы можем игнорировать значение удельной нагрузки на крыло по данному условию. В ПРИЛОЖЕНИИ Ж представлены некоторые результаты расчетов, на основании которых можно сделать вывод, какие изменения повлечет за собой выбор более высокой нагрузки на крыло без учета условия обеспечения оптимального крейсерского режима.
На основании приведенных в ПРИЛОЖЕНИИ Ж результатов можем сделать вывод, что без учета крейсерского режима методика Реймера позволяет получить вполне приемлемые значения удельной нагрузки на крыло, которые весьма в высокой степени соответствуют реальным значениям.
2.2.2 Результаты определения тяговооруженности самолета
Для реальных самолетов значения тяговооруженности составляют следующие значения: для Ту-154