Другой важной экологической проблемой является снижение уровня шума двигателей. В настоящее время существует тенденция к ужесточению требований к уровню шума двигателей в районе аэропорта.
В связи с вышесказанным тема, поднятая в данной дипломной работе, имеет большое значение для охраны окружающей среды.
Цель данной дипломной работы - рассмотрение трех наиболее известных методик эскизного проектирования самолета: методы Егера, Торенбика и Реймера, и на их основе создание новой методы, которая, по возможности, исключала бы все выявленные недостатки уже существующих подходов. Использование новой методы позволит уже на ранних этапах проектирования получить достоверные данные о взлетной массе самолета и провести оптимизационные работы с целью получения наиболее экономичной конструкции планера (конструкции, обладающей наименьшей массой). Расчеты проводятся для трех проектов, прототипами для которых являются уже существующие самолеты Ту-154, Ту-204 и Ил-96-300.
Минимизация взлетной массы самолета при выполнении всех поставленных тактико-технических требований имеет огромное значение с точки зрения экологии.
Самолет меньшей массы потребует использования двигателей меньшей мощности и меньших размеров при неизменных значениях тяговооруженности. Уменьшение размеров двигателей повлечет за собой уменьшение уровня шума, при условии использования подобных конструкций двигателей одного поколения.
Совершенствование двигательных установок идет в направлении уменьшения удельного расхода топлива и уменьшения шумовой нагрузки. Но даже без учета совершенства конструкции двигателя самолет меньшей массы потребует меньшего количества топлива для выполнения поставленной целевой задачи.
В данной дипломной работе за критерий оптимальности спроектированных конструкций имеет смысл выбрать массу пустого снаряженного самолета. Сравнение расчетных величин масс топлива в данной работе некорректно, так как рассматриваемые методы предполагают различные подходы к определению массы топлива. Например, метода Торенбика позволяет получить наименьшую и явно заниженную массу топлива, возможной причиной чего является неточность статистических зависимостей, используемых при расчете массы топлива. Метода Реймера позволяет получить наибольшие значения массы топлива, но при этом учитывает 1 час полета в режиме ожидания и позволяет регулировать величину массы топлива в зависимости от требований к продолжительности режима ожидания, в то время как методики Егера и Торенбика используют приближенные статистические значения, которые на этапе эскизного проектирования не поддаются корректировке.
Сравнение расчетных значений масс пустого снаряженного самолета для различных проектов позволит сделать объективные выводы об оптимальности используемых метод.
Таким образом, в результате расчетов были получены следующие данные масс пустого снаряженного самолета (Таблица 7.1):
Таблица 7.1 - Масса пустого самолета
Масса пустого самолета, кг | ||||
Проект по прототипу: | Егер | Торенбик | Реймер | Новая метода |
Ту-154 | 47349,2365 | 46453,449 | 40357,23 | 38833,4 |
Ту-204 | 54697,30 | 47752,00 | 36784,62 | 39087,71 |
Ил-96-300 | 109339,2886 | 109900,4224 | 101245,2996 | 100692,2 |
Мы видим, что новая комбинированная методика позволяет получить наименьшие значения массы пустого самолета, следовательно, самолеты, спроектированные в соответствии с ней, объективно потребуют меньшее количество топлива.
Небольшое увеличение массы пустого самолета имеет место для проекта по прототипу Ту-204, если проводить сравнение с массой пустого самолета, вычисленной по методе Реймера. Данный факт явился следствием заниженной оценки тяговооруженности в методе Реймера. Этот недостаток был устранен в новой разработанной методе, что потребовало установки более мощного двигателя.
С точки зрения охраны окружающей среды высокие значения тяговооруженности являются крайне желательными, так как это обеспечивает:
а) возможность уменьшение режима работы двигателей после взлета, что уменьшает шум в районе аэропорта;
б) более быстрый набор высоты и меньшие затраты топлива на взлетном режиме;
в) возможность полета на больших высотах, где удельный расход топлива имеет наименьшие значения.
Таким образом, использование новой методы для эскизного проектирования самолета позволяет получить оптимальные технические параметры проекта: удельную нагрузку на крыло и тяговооруженность, а также приемлемые значения массы пустого самолета, а, следовательно, и взлетной массы, что имеет большое значение для обеспечения охраны окружающей среды.
7.2 Организация рабочего места пользователя ПЭВМ
7.2.1 Обеспечение техники безопасности в соответствии с общими эргономическими требованиями
Организация рабочего места пользователя видеотерминалом и ЭВМ проводится в соответствии с требованиями ГОСТ 12.2.032 - 78 “ССБТ. Рабочее место при выполнении работ сидя. Общие эргономические требования”, с учетом характера и особенностей трудовой деятельности. На основании вышеуказанных требований спроектировано помещение, предназначенное для размещения рабочих мест пользователей ЭВМ, представленное на Рисунке 7.1.
Помещение рассчитано на два рабочих места, для которых пользование видеотерминалом и персональными ЭВМ являются основным видом деятельности. В рассматриваемом помещении предусмотрено два рабочих места с целью обеспечения безопасности: при возникновении угрозы жизни и здоровью для одного из работающих, другой сможет оказать ему помощь. В помещении необходимо предусмотреть наличие медицинской аптечки первой помощи.
В соответствии с Рисунком 7.1 площадь помещения составляет 17,86 м2, таким образом, на одно рабочее место приходится около 8,93 м2, что удовлетворяет требованию, предусматривающему площадь для одного рабочего места с ПЭВМ не менее 6 м2, а объем – не менее 20 м3. В рассматриваемом помещении высота потолка составляет 2,5 м, т.о. объем, приходящийся на одного рабочее место равен 22,33 м3.
Рабочие места относительно световой прорези располагаются так, что естественный свет падает сбоку и слева. Данное направление естественного света является преимущественным.
В соответствии с ГОСТ 12.2.032 – 78 расстояние от рабочих столов с видеотерминалами до стены со световой прорезью составляет 1 метр. Расстояние между боковыми поверхностями видеотерминалов равно 1,8 м, что соответствует требованиям ГОСТ 12.2.032 – 78, согласно которым данное расстояние должно быть не менее 1,2 м.
Конструкция рабочего места пользователя ЭВМ обеспечивает поддержание оптимальной рабочей позы со следующими эргономическими характеристиками: ступня ног – на полу или на подставке для ног, в случае, если ноги не достают до пола; бедра – в горизонтальной плоскости; предплечье – вертикально; локти – под углом 70 – 90 градусов к вертикальной плоскости; запястья согнуты под углом 10 – 20 градусов относительно горизонтальной плоскости, наклон головы – 15 – 20 градусов относительно вертикальной плоскости.
Так как пользование видеотерминалом и ПЭВМ является основным видом деятельности, то указанное оборудование размещается на основном рабочем столе с левой стороны.
Рабочее место состоит из основного рабочего и стола с правосторонним расположением дополнительного рабочего стола (см. Рисунок 7.1 поз. 3).
Рабочие основной и дополнительный столы имеют следующие параметры: высота – 725 мм, ширина – 1400 мм, глубина – 800 мм. Гарантированное пространство для ног работающего составляет: высота – 710 мм, ширина – 1000 мм, глубина – 800 мм. Кроме того, основной рабочий стол оборудуется подставкой для ног шириной 300 мм, глубиной 400 мм и возможностью регулирования высоты до 150 мм и угла наклона опорной поверхности до 20 градусов. Подставка имеет рифленную поверхность и бортик на переднем крае высотой 10 мм. Все вышеуказанные параметры соответствуют требованиям ГОСТ 12.2.032 – 78.
Рабочее место пользователя ЭВМ оборудуется креслами (см. Рисунок 7.1 поз. 6), обладающими следующими элементами: сидение, спинка, стационарные подлокотники.
Рабочее кресло является подъемно – поворотным, которое регулируется по высоте, углу наклона сидения и спинки, по расстоянию спинки к переднему краю сидения, высоте подлокотников. Регулирование каждого параметра является независимым, плавным и имеет надежную фиксацию. Ход ступенчатого регулирования элементов сидения составляет для линейных размеров 20 мм, для угловых – 5 градусов. Усилия во время регулирования не превышают 20 Н.
Ширина и глубина кресла составляют 400 мм, высота поверхности сидения регулируется в пределах от 400 до 500 м, угол наклона поверхности регулируется от 15 градусов вперед до 5 градусов назад. Высота спинки составляет 300 мм, ширина – 400 мм. Угол наклона спинки регулируется в границах от 0 до 30 градусов относительно вертикального положения. Расстояние от спинки к переднему краю сидения регулируется в границах 260 – 400 мм.
Для снижения статического напряжения мышц рук кресла оборудуются стационарными подлокотниками длиной 300 мм, шириной – 70 мм. Подлокотники регулируются по высоте над сидением на величину ± 30 мм. Высота подлокотников составляет 230 мм. Также подлокотники регулируются по расстоянию между ними в границах 350 – 400 мм.