Смекни!
smekni.com

Методика расчета весового, масса взлетная, тяговооруженность, нагрузка удельная на крыло, формула статистическая, масса относительная, масса абсолютная, уравнение существования, сводка весовая (стр. 20 из 39)

Видеотерминал (см. Рисунок 7.1 поз.1) располагается на основном рабочем столе на расстоянии 700 мм от глаз работника, с учетом того, что на рассматриваемых рабочих местах установлены мониторы с размером по диагонали, равным 15” (38 см).

Клавиатура размещается на поверхности стола. Угол наклона клавиатуры регулируется в пределах от 5 до 15 градусов.

Рабочие места оснащены подвижными пюпитрами (держателями) (см. Рисунок 7.1 поз.7), высота и угол наклона которых регулируется.

Принтер (см. Рисунок 7.1 поз.2) располагается на дополнительном столе рабочего места. Данное расположение обеспечивает свободу движения рабочего за основным столом и хорошую видимость экрана монитора. Кроме того, это уменьшает вибрации на рабочем месте при выводе информации на принтер.

Также в рассматриваемом помещении предусмотрен плоттер (см. Рисунок 7.1 поз.4), который размещается рядом с рабочими местами и шкаф для бумаг (см. Рисунок 7.1 поз.8)

7.2.2 Обеспечение техники безопасности в соответствии с требованиями к вентиляции, отоплению и кондиционированию

Помещения с ЭВМ должны быть оборудованы системами отопления, кондиционирования воздуха или приточно–вытяжной вентиляцией в соответствии с “СНиП 2.04.05–91 Отопление, вентиляция и кондиционирование”.

Параметры микроклимата, ионного состава воздуха, содержимое вредных веществ на рабочих местах, оснащенных ЭВМ, должны отвечать требованиям СН 4088 – 86 “Санитарные нормы микроклимата производственных помещений”, ГОСТ 12.1.005 – 88 “ССБТ Общие санитарно – гигиенические требования к воздуху рабочей зоны”, СН 2152 – 80 “Санитарно – гигиенические нормы допустимых уровней ионизации воздуха производственных и общественных помещений”.

В рассматриваемом помещении на одно рабочее место приходится 22,33 м3, таким образом, в соответствии с требованиями в помещение должен подаваться объем наружного воздуха в размере 20 м3/час на одного рабочего.

В помещении необходимо поддерживать следующие параметры микроклимата: в холодные периоды года температура воздуха должна составлять 22 – 240С; относительная влажность воздуха – 60 – 40%; подвижность воздуха – 0,1 м/с. Температура воздуха может колебаться в пределах от 21 до 250С при сохранении остальных параметров микроклимата в указанных выше пределах.

В теплые периоды года температура воздуха должна составлять 23 – 250С; относительная влажность воздуха – 60 - 40%; подвижность воздуха – 0,1 – 0,2 м/с. Температура воздуха может колебаться от 22 до 260С при сохранении остальных параметров микроклимата в указанных пределах.

Воздух, поступающий в помещение, должен быть очищен от загрязнений, в том числе от пыли и микроорганизмов. Запыленность воздуха не должна превышать требований пункта 4.13 СН 512-78.

Уровень ионизации воздуха в помещении должен удовлетворять требованиям СНиП 2152 – 80. Оптимальное количество позитивных ионов на 1 см3 составляет 1500 – 3000; негативных: 3000 – 5000.

Для поддержки допустимых значений микроклимата и концентрации позитивных и негативных ионов в рассматриваемом помещении предусмотрена установка кондиционера (см. Рисунок 7.1 поз.5).

Кондиционирование воздуха должно обеспечивать автоматическое поддержание параметров микроклимата в необходимых пределах в течение всех сезонов года, очистку воздуха от пыли и вредных веществ, создание небольшого избыточного давления в чистых помещениях для исключения поступления неочищенного воздуха.

7.2.3 Обеспечение техники безопасности в соответствии с требованиями к освещению

В помещении предусмотрена световая прорезь, обеспечивающая естественную освещенность. Размещение рабочих мест обеспечивает оптимальное направление естественного света – сбоку и слева. Коэффициент естественной освещенности составляет 1,5% в соответствии с “СНиП 11-4-79 Естественное и искусственное освещение”.

На окнах в рассматриваемом помещении предусмотрены жалюзи.

В помещении предусмотрена искусственная освещенность люминесцентными лампами типа ЛБ. Уровень освещенности на рабочем столе должен составлять 300 лк в соответствии с СНиП 11-4-79.

7.2.4 Обеспечение техники безопасности в соответствии с требованиями к защите от статического электричества и излучений

В рассматриваемом помещении для предотвращения образования статического электричества и для защиты от него полы предусматривают антистатическое покрытие.

Допускаемые уровни напряженности электростатических полей не должны превышать 20кВ в течении 1 часа (ГОСТ 12.1045 - 81).

7.3 Расчет искусственной освещенности помещения, предназначенного для размещения рабочих мест с ПЭВМ

Для расчета освещенности помещения используем метод удельной мощности. Задача расчета общего равномерного освещения по таблицам условной удельной мощности сводится к определению необходимого числа ламп осветительной установки. Для расчета используем следующие формулы:

, (7.3.1)

где N – число ламп;

w – удельная мощность, Вт/м2;

P – мощность ламп в светильнике, Вт;

S – площадь помещения, м2.

Площадь рассматриваемого помещения составляет S=17,86 м2.

, (7.3.2)

где

- условная удельная мощность, Вт/м2;

- поправочный коэффициент на освещенность и световую отдачу.

Условная удельная мощность определяется по /10/.

Поправочный коэффициент

определяется по /10/.

В помещении предусматривается установка двухламповых светильников типа УСП5 с люминесцентными лампами типа ЛТБ40.

Люминесцентные лампы типа ЛТБ40 обладают следующими техническими данными: мощность – 40 Вт, световой поток – 2780 лм, световая отдача – 69,5 лм/Вт.

В соответствии с /10/ для рассматриваемых светильников в проектируемом помещении с размерами 3,8×4,7×2,5 и при коэффициенте отражения равном 70% для потолка, 50% для стен и 30% для пола условная удельная мощность равна 6,9.

Поправочный коэффициент

для ламп типа ЛТБ40 и при требуемой в соответствии с СНиП 11-4-79 освещенности, равной 300 лк, равен 3,2. Таким образом, получаем:

Принимаем количество ламп, равным N = 10, таким образом, для обеспечения заданного уровня освещенности в помещении необходимо установить пять двухламповых светильников типа УСП5 с лампами типа ЛТБ40.

ЗАКЛЮЧЕНИЕ

Основной целью данной дипломной работы является повышение точности и достоверности весовых расчетов самолета на ранних стадиях проектирования в соответствии с различными методиками. В данной работе рассмотрены три подхода: методика Егера, являющаяся основой для отечественного учебного дипломного и курсового проектирования, методика Торенбика, которая была разработана на основе материалов, представленных в /4/, и методика Реймера, при рассмотрении которой за основу были взяты материалы из источника /5/. Для целей данной дипломной работы был выполнен перевод некоторых глав из англоязычного источника /5/, непосредственно касающихся проблемы весового проектирования самолета.

В соответствии с данными методиками проведен расчет трех самолетов, прототипами для которых явились Ту-154, Ту-204 и Ил-96-300, а также верификация полученных результатов на основе известных величин масс рассматриваемых прототипов. Расчет проектируемых самолетов по трем вышеуказанным методикам включал в себя оценку основных технических характеристик проектов: тяговооруженности и удельной нагрузки на крыло, а также расчет взлетной массы самолетов в первом и втором приближениях. На основе результатов сделаны следующие выводы: методика Егера позволяет получить рациональные значения удельной нагрузки на крыло и тяговооруженности, хотя необходима корректировка рекомендаций, касающихся статистических величин коэффициентов максимальной подъемной силы во взлетно-посадочных условиях. Статистические формулы, используемые для оценки взлетной массы в первом приближении в соответствии с методикой Егера, требуют уточнения и корректировки, так как не позволяют получить приемлемых результатов для некоторых классов самолетов. Так, по формуле (1.1.19) относительная масса топлива для проекта по прототипу Ил-96-300 составляет 0,58, что говорит о невозможности создания самолета с заданными параметрами; статистическая формула для оценки относительной массы оборудования (1.1.18) также дает завышенные результаты для проекта по прототипу Ту-204. (см. ПРИЛОЖЕНИЯ Б, В). Основным недостатком весового расчета самолета во втором приближении является невозможность рассмотрения компонентов группы силовой установки и оборудования по отдельности, так как по методике Егера оценивается масса групп в целом.

При расчете проектируемых самолетов в соответствии с методикой Торенбика отмечены следующие факты: заниженная оценка удельной нагрузки на крыло и тяговооруженности самолета, заниженная оценка относительной массы топлива. Кроме того, в ходе проведения расчетов выявлены статистические формулы, используемые для поэлементного расчета массы самолета во втором приближении, которые требуют исправления (см. ПРИЛОЖЕНИЕ И).

Результаты расчетов в соответствии с методикой Реймера позволяют говорить о заниженной оценке тяговооруженности проектируемых самолетов; величина удельной нагрузки на крыло в большой степени зависит от выбора расчетных условий (см. ПРИЛОЖЕНИЕ Ж). Методика Реймера позволяет наилучшим образом оценить относительную массу топлива, необходимого на полет, так как предусматривает рассмотрение отдельных этапов полета с учетом их количества и продолжительности. Кроме того, данная методика располагает в достаточной степени подробными статистическими весовыми формулами, использование которых позволяет получить приемлемые значения массы конструкции и силовой установки проектируемых самолетов, а также обнаружить огромный потенциал в уменьшении массы пустого самолета за счет использования более совершенных систем управления самолетом и оборудования.