Смекни!
smekni.com

Методика расчета весового, масса взлетная, тяговооруженность, нагрузка удельная на крыло, формула статистическая, масса относительная, масса абсолютная, уравнение существования, сводка весовая (стр. 5 из 39)

- относительная масса носовой опоры шасси (на стояке), обычно
.

, (1.1.42)

где

- коэффициент, учитывающий число главных стоек шасси:

=1,0 , если основная опора состоит из двух стоек (проекты по прототипам Ту-154, Ту-204);

=1,1, если основная опора состоит из трех стоек (проект по прототипу Ил-96-300);

, (1.1.43)

где

- число всех колес главных стоек шасси (для шасси с тележкой – число пар колес);

- ширина колеса (шины), м.

Относительная масса носовой опоры шасси:

, (1.1.44)

где

- коэффициент, учитывающий число главных стоек шасси:

(проекты по прототипам Ту-154, Ту-204);

(проект по прототипу Ил-96-300).

Масса силовых элементов носовой стойки:

, (1.1.45)

где

- высота носовой стойки (от оси колес до оси поворота), м;

- эксплуатационная нагрузка на носовую стойку шасси при торможении, т.

Приближенно:

(1.1.46)

Масса конструктивных элементов носовой стойки:

(1.1.47)

Если для шасси требуются обтекатели, то их массу необходимо включить в массу шасси. Масса обтекателей шасси составляет 10...12% от суммарной массы шасси.

Формулы (1.1.28 – 1.1.37) справедливы для самолетов всех типов, исключая палубные, с взлетной массой

104 кг.

1.1.5 Масса силовой установки

, (1.1.48)

где

- коэффициент, показывающий, во сколько раз масса силовой установки больше массы двигателей;

- удельная масса двигателей;

- стартовая тяга, кгс.

В относительных величинах:

, (1.1.49)

где

- стартовая тяговооруженность.

, (1.1.50)

где

- коэффициент, зависящий от компоновки самолета и числа двигателей;

=1,02 для трех двигателей, расположенных в хвостовой части фюзеляжа (проект по прототипу Ту-154);

=0,95 для двух двигателей, расположенных на крыле (проект по прототипу Ту-204);

=1,0 для четырех двигателей, расположенных на крыле (проект по прототипу Ил-96-300).

- коэффициент, зависящий от числа М полета, формы воздухозаборников и сопел.

При полете на М<1 и для круглых воздухозаборников и сопел

=0,0236.

- число двигателей на самолете (без вспомогательных);

- число двигателей, оборудованных реверсами тяги;

- коэффициент, учитывающий наличие у двигателей форсажных камер;

=1 – без форсажа (для всех рассматриваемых проектов);

1.1.6 Относительная масса топлива

, (1.1.51)

где индексы означают «н. р.» - взлет, набор высоты и разгон до крейсерской скорости;

«сн. п.» - снижение и посадка;

«н. з.» - навигационных запас;

«пр» - прочее (для маневрирования по аэродрому, опробования двигателей, несливаемый остаток).

, (1.1.52)

где

- начальная высота крейсерского полета, км.

, (1.1.53)

где

- конечная высота крейсерского полета перед снижением самолета, км.

(1.1.54)

(1.1.55)

На режиме (V,K) = const

, (1.1.56)

где

– дальность полета без расходования навигационного запаса, км;

– горизонтальная дальность при наборе высоты, разгоне и снижении;

- средняя высота крейсерского полета, км;

W – расчетная скорость встречного ветра, при полете на высотах 10...12 км W=70 км/ч.

1.2 Расчет самолета в соответствии с методикой по Торенбику

По аналогии с методикой Егера на основе материалов, представленных в /4/, в данной дипломной работе была разработана методика по Торенбику. Вид формул соответствует данным источника, порядок выполнения и объем методы определялся автором диплома.

В соответствии с методикой по Торенбику определяется следующий порядок выбора основных параметров самолета.

1) На основе статистических данных задаются предполагаемыми значениями взлетной массы самолета

.

2) Определяется удельная нагрузка на крыло

из условия обеспечения горизонтального полета на крейсерском режиме:

, (1.2.1)

, (1.2.2)

где коэффициент

пропорционален коэффициенту профильного сопротивления; для самолетов с убирающимся шасси его величина находится в пределах от 0,008 до 0,01. Для рассматриваемых проектов принимаем
=0,01.

е – коэффициент Освальда, для скоростных реактивных самолетов он составляет 0,75...0,85 (с увеличением стреловидности коэффициент е уменьшается). Для рассматриваемых проектов принимаем е= 0,8.

3) Определяется удельная нагрузка на крыло

из условия обеспечения нормального взлета самолета:

, (1.2.3)

где

- средняя тяга при средней скорости
с учетом эффекта спутной струи и отбора мощности.

(1.2.4)

Характерные требования к параметрам нормального взлета для самолетов, сертифицируемых по FAR 25, представлены в Таблице 1.2.1.

Таблица 1.2.1 - Требования к нормальному взлету

V4/Vc

kвзл

Hвзл, м

1,25 – 1,3

необязательное требование

1,15

10,7

начальная скорость набора высоты при нормальном взлете, м/с;

эквивалентный коэффициент трения с учетом аэродинамических сил:

(1.2.5)