У пьезоматериалов на основе лития показатель ширины пропускания, правда, доходит иногда до 4%. Но это важное свойство сводится на нет необходимостью подавлять возникающие из-за чрезмерной термочувствительности (кварц и лангасит намного более стабильны в этом) паразитные сигналы, что приводит к усложнению и удорожанию всего устройства. Лангаситные фильтры, изготавливаемые на «Фононе», были в десять раз меньше кварцевых при сопоставимой
ширине пропускания и при этом обладали почти такой же термоустойчивостью.
На сегодняшний день Россия заключила контракт с французской Temex Microsonics. В их совместный проект в рамках европейской инновационной программы Eureka в течение трех лет будет инвестировано около 3 млн евро. Более 2 млн предоставит французская сторона, в первую очередь правительство Франции, более 200 тыс. выделит Фонд Бортника, еще около 700 тыс. собственных средств вложит «Фомос». В результате российская компания выйдет с новым пьезоэлектрическим (от греческого piezo — давлю) материалом лангаситом на европейский рынок, а Temex Microsonics организует из него серийное производство фильтров для получающих все большее распространение мобильных систем нового поколения (стандарт W-CDMA).
Физическая теория пьезоэлектрического эффекта.
Диэлектрики (по греч. dia – через, сквозь, по англ. elec – электрический) – это вещества , которые не проводят электрический ток. Причиной этого является отсутствие у диэлектриков свободных зарядов. Положительные и отрицательные заряды в молекулах и атомов диэлектриков связаны друг с другом кулоновскими силами, значительно превосходящими силы, с которыми внешнее электрическое поле может воздействовать на эти заряды. Оно не может оторвать их друг от друга, а может лишь сместить на расстояние порядка размеров самой молекулы (10-10 м). Поэтому положительные и отрицательные заряды в молекулах диэлектриков являются связанными. Они не могут свободно передвигаться по диэлектрику, внесенному во внешнее электрическое поле.
В молекулах веществ можно указать точку, в которой суммарный заряд электронной оболочки молекулы будет оказывать на ее положительные заряды такое же воздействие, какое оказывали бы все отрицательные заряды этой молекулы, будучи распределены по всему ее объему.
Эта точка называется центром тяжести отрицательных зарядов молекулы. Точно так же можно указать центр тяжести положительных зарядов, т.е. точку, в которой суммарный положительный заряд молекулы будет оказывать на ее отрицательные заряды такое же воздействие, какое на них оказывают все положительные заряды молекулы.
Диэлектрики, в молекулах которых центры тяжести положительных и отрицательных зарядов совмещены в отсутствии внешнего электрического поля называют неполярными диэлектриками. Примером таких диэлектриков могут быть газы: водород, азот, кислород. Диэлектрики, в молекулах которых центры тяжести положительных и отрицательных зарядов пространственно разделены и в отсутствии внешнего электрического поля называются полярными. Примером полярных молекул служат молекул служат молекулы льда.
Смещение зарядов в молекулах и атомах диэлектрика в противоположных направлениях под действием электрического поля, в результате чего на поверхностях диэлектрика возникают нескомпенсированные связанные заряды, называется поляризацией диэлектрика.
У однородных и изотопных твердых аморфных диэлектриков, а также диэлектриков жидких и газообразных, в отсутствие внешнего электрического поля поляризация всегда отсутствует из-за разориентации дипольных моментов отдельных молекул. Если такой поляризованный диэлектрик удалить из внешнего электрического поля, то тепловое хаотическое движение, всегда присущее молекулам, быстро ликвидирует связанные заряды на его поверхностях и при этом суммарный дипольный
момент каждой единицы объема диэлектрика станет равен нулю, то есть поляризация исчезнет.
Однако в природе существуют кристаллические диэлектрики, молекулы которых образуют группы, обладающие самопроизвольной (спонтанной) поляризацией даже в отсутствие внешнего электрического поля. Понятно, что эти группы могут быть образованы только из полярных молекул. Такие группы молекул называются доменами. Поведение молекул, входящих в состав домена, объясняется законами квантовой механики.
Диэлектрики, обладающие доменной структурой, называют сегнетоэлектриками. Название это происходит от слов «сегнетова соль» - наиболее типичного сегнетоэлектрика, который в свою очередь, был назван в честь французского аптекаря Э. Сегнетта, впервые синтезировавшего это вещество.
Все сегнетоэлектрики – кристаллы.
При помещении кристалла неполяризованного сегнетоэлектрика во внешнее электрическое поле и увеличении напряженности этого поля домены начнут все более ориентироваться по полю, чему препятствует тепловое разориентирующее движение молекул.
Рисунок 1. Сегнетоэлектрик во внешнем поле.
При достижении некоторой достаточно большой напряженности все домены кристалла окажутся ориентированы по полю. Такое состояние диэлектрика называется насыщением, а соответствующая напряженность – напряженностью насыщения.
Если удалить диэлектрик из электрического поля, то он сохранит поляризацию.
Способность сохранять поляризацию и в отсутствие внешнего электрического поля является самой главной особенностью, отличающей сегнетоэлектрики от остальных диэлектриков.
Чтобы располяризовать сегнетоэлектрик, надо его поместить в электрическое поле, антинаправленное первоначальному.
В настоящее время известно несколько сотен сегнетоэлектриков. Второй существенной особенностью, отличающей их от остальных диэлектриков, является чрезвычайно высокое значение относительной диэлектрической проницаемости, достигающей у отдельных сегнетоэлектриков нескольких тысяч, тогда как у остальных диэлектриков она колеблется в пределах десяти и только у воды достигает 81. Третьей особенностью сегнетоэлектриков является зависимость относительной
диэлектрической проницаемости
от напряженности внешнего электрического поля, тогда как у остальных диэлектриков она постоянна.Все сегнетоэлектрики обладают такими замечательными свойствами лишь в определенном интервале температур. Например, сегнетова соль имеет доменную структуру лишь в интервале температур между -15 0С и 22,5 0С. При иных температурах она ведет себя как обычный диэлектрик. Например, у кварца до температуры 200 градусов Цельсия пьезоэлектрические свойства изменяются незначительно, а затем до температуры 576 градусов Цельсия начинают медленно ослабевать. При 576 градусах происходит перестройка кристаллической решетки кварца, в результате которой пьезоэлектрические свойства у него исчезают. При понижении температуры изменение свойств кварца происходит в обратном направлении.
Эти переходные температуры, при которых диэлектрик становится сегнетоэлектриком, называются точками Кюри, по имени братьев Пьера и Жолио Кюри, которые обнаружили это явление.
У большинства диэлектриков поляризация возникает под действием внешнего электрического поля, а у пьезоэлектриков в результате механического воздействия, например, при сжатии или растяжении.
Различают продольный и поперечный пьезоэффект.
Возникновение зарядов на гранях, перпендикулярных полярной оси, при однородной деформации кристалла вдоль этой оси называется продольным пьезоэффектом. Однако можно вызвать появление зарядов на тех же гранях, сжимая или растягивая кристалл перпендикулярно полярной оси, если только при этом происходит растяжение или сжатие кристалла вдоль полярной оси. Это явление называется поперечным пьезоэффектом. Его существование обуславливается связью между продольными и поперечными деформациями твердого тела.
Рисунок 2. Продольный (а) и поперечный (б) пьезоэффекты.
Пьезоэлектриками являются все сегнетоэлектрики, а также некоторые другие диэлектрики, например, кварц, некоторые сорта керамики.
Пьезоэлектрическими свойствами могут обладать только ионные кристаллы. Пьезоэлектрический эффект возникает в том случае, когда под действием внешних сил кристаллическая подрешетка из положительных ионов деформируется иначе, чем кристаллическая подрешетка из отрицательных ионов. В результате происходит относительное смещение положительных и отрицательных ионов, приводящее к возникновению поляризации кристалла и поверхностных зарядов. Поляризованность в первом приближении прямо пропорциональна деформации, которая, в свою очередь, прямо пропорциональна силе. Следовательно, поляризованность прямо пропорциональна приложенной силе. Между разноименно заряженными гранями деформированного диэлектрика возникает разность потенциалов, которую можно измерить, а по ее значению сделать заключение о величине деформаций и приложенных силах.