Смекни!
smekni.com

Управление образования Верхнесалдинского городского округа (стр. 3 из 6)

Физическая картина поляризации твердых диэлектриков раскрывается квантовой механикой. Я рассмотрю только формальную теорию поляризации.

Пьезоэлектрики – кристаллы, имеющие решетку из положительных и отрицательных ионов, у которых при деформации их в определенных направлениях на гранях, перпендикулярных направлению деформирующей силы, возникают поверхностные связанные заряды.

Рисунок 3. Решетка кварца.

Если эти грани снабдить металлическими обкладками, то на их внешней поверхности появятся наведенные свободные заряды того же знака, что и связанные. Между обкладками получится разность потенциалов.

Классическим (и практически важным) пьезоэлектриком является кварц (SiO2). Элементарная ячейка его кристаллической решетки содержит


три молекулы, состоящие из ионов кремния (положительных) и кислорода (отрицательных). Они схематично показаны на рисунке 3,а (недеформированный кристалл): положительные ионы – заштрихованные кружки, отрицательные – белые.

При сжатии кристалла в направлении Х1 симметрия ячейки нарушается (рисунок 3,б). На верхней грани кристалла появляется связанный отрицательный заряд, на нижней – такой же положительный. При растяжении (рисунок 3,в) знаки зарядов изменяются на противоположные.

Поверхностная плотность зарядов

при малых относительных деформациях пропорциональны возникшему в кристалле механическому напряжению
:

Данную зависимость называют уравнением прямого пьезоэффекта.

Коэффициент пропорциональности - пьезомодуль d – выражается в кулонах на ньютон (Кл∙Н-1). Для кварца

d=2∙10-12 Кл/Н.

Рассмотрим обратный пьезоэффект: при подаче на кристалл электрического напряжения он деформируется, причем знак деформации зависит от направления внешнего электростатического поля

Рисунок 4.Схематичные изображения прямого (а, б) и обратного (в, г) пьезоэффектов. Стрелками F и Е изображены внешние воздействия - механическая сила и напряженность

электрического поля. Штриховыми линиями показаны контуры пьезоэлектрика до внешнего воздействия, сплошными линиями - контуры деформации пьезоэлектрика (для наглядности во много раз увеличены); Р - вектор поляризации.


Пусть в кристалле создано механическое напряжение

=104 Па. При этом плотность возникших зарядов составит

=2∙10-8 Кл/м2

и в кристалле (

=4,5) образуется электростатическое поле с напряженностью

В/м.

При толщине кристалла h=10-2 м на обкладках его граней получится разность потенциалов 5 В.

При подаче на пьезоэлектрик переменного электрического напряжения он приходит в вынужденные механические колебания. При резонансе (а пластина обладает собственной частотой, которая обратно пропорциональна толщине кристалла) амплитуда колебаний резко возрастает. Если кристалл опущен в жидкость, акустическое сопротивление которой не слишком отличается от акустического сопротивления кристалла, то в жидкости возбудятся интенсивные механические волны. Обычно применяют ультразвуковые частоты, при которых длина волны в жидкости невелика, - это дает возможность получить волну, распространяющуюся без заметного поглощения, что представляет практический интерес.

Ультразвуковую волну можно создать в твердом теле (например, в металлической отливке), где волна распространяется без заметного поглощения. Но если в металле имеется полость, случайно возникшая при изготовлении отливки, то на ней волна рассеется. Поэтому, зондируя металл ультразвуковой волной, можно находить, не разрушая его, внутренние дефекты.

Так как ускорения при ультразвуковых волнах очень велики – при амплитуде хm=10-6 м и частоте

=105 Гц амплитуда ускорения составит

=4∙105 м/с2=4∙104 g,

То ультразвуковые волны используются для очистки поверхности металлических тел (опущенных в жидкость), для создания эмульсий (взвесей капелек одной жидкости в другой, в ней не растворяющейся) и многих других практических применений.


Как измерить значение высокого напряжения, возникающего при пьезоэлектрическом эффекте?

Пьезоэлемент – основная часть пьезозажигалки. Поэтому все свои опыты я проводил используя пьезозажигалку. Для ее удобного использования я вынул два вывода из пластмассового корпуса.

Чтобы при демонстрации прямого пьезоэффекта определить напряжение на выходе, один вывод от зажигалки я соединил с корпусом демонстрационного электрометра, другой – со стержнем электрометра. При плавном нажатии на кнопку зажигалки стрелка электрометра начинает отклоняться. Но определить максимальное значение напряжения с помощью электрометра мне не удалось, так как стрелка прибора выходит за пределы шкалы (мы знаем, что цена деления шкалы электрометра примерно 300 В).

Попробую определить, в каких пределах будет лежать полученное напряжение. Для этого проведем опыт с люминесцентной лампой. Удалю, стартер из схемы лампы и попробую лампу, включенную в сеть зажечь. Лампа не зажигается. Для того чтобы в лампе наблюдался самостоятельный разряд необходимо иметь разность потенциалов порядка десяти киловольт. Попробую создать такие условия с помощью пьезоэлемента от зажигалки, включенного вместо стартера. Один из выводов пьезозажигалки соединяем с одним из электродов лампы, другой - с проводом, намотанным на стеклянную поверхность лампы. При нажатии на клавишу пьезозажигалки лампа загорается.

Для более точного определения напряжения на выходе зажигалки я использовал демонстрационные весы. К дну одной из чашек весов приклеил квадрат из металлической фольги и с помощью очень тонкой проволоки соединил его с одним контактом зажигалки. Затем металлизированную чашечку перевернул и установил на весы. Сверху этой чашечки расположил еще один квадрат из фольги (воспользовался конструкцией весов) и соединил его со вторым контактом зажигалки. Две металлические пластинки из фольги образуют плоский конденсатор. Уравновесил чашки весов с помощью грузов.

При плавном нажатии на клавишу зажигалки возникает сила электростатического притяжения между пластинами и весы выходят из равновесия. По отклонению стрелки весов определяю массу гирек, необходимых для восстановления равновесия. Тем самым я смогу измерить максимальное значение силы

между пластинками и вычислить напряжение. Я провел 3 опыта в которых использовал пластинки площадью S=1,21∙10-2 м2, расстояние между ними устанавливал 2∙10-2 м, среднее значение в опытах массы m=7∙10-4 кг.

Зная, что

Используя формулу 1, полученную для вычисления напряжения я получил следующие результаты

При проведении опытов по измерению напряжения на выходе пьезозажигалки я наблюдал и обратный пьезоэффект. Так, разряжая пластины конденсатора посредством короткого замыкания, я слышал щелчок пьезоэлемента вследствие его деформации при разряде конденсатора.


Применение пьезоэлектрического эффекта.

Основное применение пьезоэффекта: - взаимопреобразование механических и электрических колебаний - датчики частот, датчики и источники ультразвуковых колебаний, звукосниматели, манометры и т.д., так как пьезоэлектрики являются обратимыми электромеханическими преобразователями, т. е. способны преобразовывать механическую энергию в электрическую и, наоборот, электрическую энергию в механическую. Преобразователи, основанные на использовании прямого пьезоэффекта, называют преобразователями-генераторами; они имеют механический вход и электрический выход.

Преобразователи, основанные на использовании обратного пьезоэффекта, называют преобразователями-двигателями; они имеют электрический вход и механические выходы. Известно множество пьезоэлектрических устройств, основанных на использовании как прямого, так и обратного эффектов. Прямой эффект используется, например, в микрофонах, звукоснимателях, датчиках механических сил, перемещений и ускорений, бытовых зажигалках для газа и др. Обратный эффект послужил основой для создания телефонов, громкоговорителей, ультразвуковых излучателей, реле, двигателей и т. п.

Известны и нашли практическое применение пьезоэлектрические преобразователи - пьезоэлектрические трансформаторы (сокращенно пьезотрансформаторы). Схематически устройство пьезотрансформатора изображено на рисунке 5, поясняющем, что он представляет собой пьезоэлектрический преобразователь в виде четырехполюсника, имеющего только электрические вход и выход.