Смекни!
smekni.com

Управление образования Верхнесалдинского городского округа (стр. 6 из 6)

«Корпорация ВСМПО –Ависма» ведущее предприятие в мире по производству полуфабрикатов из титановых сплавов для авиационной промышленности, атомной энергетики, медицины и других сфер. Наше предприятие является одним из основных поставщиков таких известных фирм как Snecma, Rolls Royce, Boeing, Pratt & Whitney, Goodrich.

Это стало возможным благодаря высокому качеству производимой продукции, высокотехнологичным процессам производства, использованию современного оборудования и методов производства.

Доминирующим показателем рентабельности предприятия является себестоимость выпускаемой продукции. И снижение себестоимости с постоянно растущим качеством – основная и постоянная задача предприятия. Составляющей себестоимости продукции являются технологические операции контроля продукции, которые на нашем предприятии прежде всего надежны и чувствительны.

Известно, что пьзоэффект лежит в основе ультразвукового контроля.

На нашем предприятии ультразвуковой контроль широко применяют для стопроцентного контроля изделий механических, термических, литейных цехов, т.е. тех изделий, которые благодаря сложности своей конфигурации исключают другие виды дефектоскопии (рентгеновский, люминесцентный).

Ультразвуковой контроль основан на способности энергии ультразвуковых колебаний распространяться с малыми потерями в однородной упругой среде и отражаться от нарушений сплошности в этой среде. Существуют два основных метода ультразукового контроля — метод сквозного прозвучивания и метод отражения. Ультразвуковой луч вводится в образец, и индикатор измеряет интенсивность колебаний, прошедших через образец или отраженных от неоднородностей, расположенных внутри образца. Дефект выявляется либо по уменьшению прошедшей через образец энергии, либо по энергии, отраженной от дефекта. Осуществляется ультразвуковая дефектоскопия при помощи дефектоскопов.

Дефектоскоп (от лат. «дефект» - недостаток и греч. «скопео» - «смотрю») – устройство, позволяющее обнаружить дефекты в изделиях из различных металлических и неметаллических материалов без их разрушения. Нет ли в изделии каких-нибудь трещин, раковин в глубине или других дефектов, которые могут привести к аварии, - все это выяснит дефектоскоп. А ведь даже незначительная трещина, не видимая невооруженным глазом, может привести к разрушению изделия.


Рассмотрим физический аспект работы ультразвукового дефектоскопа – УЗД.

Главный элемент такого прибора – кварцевая пластинка. Когда на нее падает отраженная дефектом звуковая волна, кварц сжимается и растягивается с частотой колебаний звуковой волны и на его гранях возникает переменное электрическое напряжение. Это – следствие прямого пьезоэлектрического эффекта; в результате под действием механического напряжения на поверхности кварца и некоторых других диэлектриков возникает электрический заряд в результате их поляризации.

Если же на обкладки кварцевой пластины подать импульс переменного напряжения, то кварцевая пластина начинает колебаться с частотой подаваемого напряжения и становится источником акустических колебаний той же частоты наблюдают обратный пьезоэлектрический эффект.

Пьезоэлектрический эффект присущ только кристаллам, элементарные ячейки которых не имеют центра симметрии. Это ионные кристаллы, состоящие как бы из двух или нескольких «вдвинутых» одна в другую простых решеток, каждая из которых построена из ионов одного знака – либо положительных, либо отрицательных. При деформации кристалла эти простые решетки сдвигаются относительно друг друга. При этом изменяется электрический момент кристалла: на его гранях появляется электрическое напряжение. Поляризация пьезоэлектрика в электрическом поле приводит к его деформации – обратному пьезоэлектрическому эффекту.

Рисунок 9. Схема УЗД.

Рассмотрим схему УЗД. От генератора на кварцевую пластинку (1) поступает высокочастотный импульс (2). Кварцевая пластинка начинает колебаться и излучает ультразвуковые волны в объем испытываемой металлической детали.


Отражаясь от дефекта, например трещины, ультразвук возвращается на пластинку и превращается в электрические колебания (3), поступающие на осциллограф (5). По расстоянию между прямым и отраженным импульсами можно определить глубину залегания дефекта (4).

Лаборатория ультразвукового контроля была создана на ВСМПО в 1962 году. Инициатором создания лаборатории неразрушающих методов контроля был Владислав Валентинович Тетюхин. Он привез ультразвуковой дефектоскоп и обучил на нем работать. Лаборатория была признана одной из лучших в авиационной отрасли. Руководил коллективом Арпад Францевич Немет. Здесь работали настоящие специалисты. Например, после долгих мук с датчиками для ультразвукового контроля Кишиневского завода было решено изготавливать их самим. За дело взялся Н.И.Калинин – и сделал! Такой тщательности и аккуратности, скрупулезности в работе, как у Николая Ивановича, не было ни у кого. Вот уж кто был незаменимым специалистом!

Руководитель группы Н.И.Савельев обладал прекрасным нестандартным мышлением. Отличное знание особенностей ультразвукового контроля и незаурядные способности к конструированию электромеханической части позволяли ему находить оригинальные решения. Он разработал несколько автоматизированных установок. Некоторые работают и сейчас.

О.Р. Ледер, пришедший в лабораторию в 1970 году, считает пробой своих сил расчет и разработку раздельно – совмещенных датчиков для ультразвукового контроля слитков, которые позволили резко сократить переточку слитков.

На нашем предприятии нашли широкое применение пьезоэлементы в качестве датчиков измерения усилия в прокатном, кузнечном производстве, при проведении косвенных измерений массы горячего металла. При освоении новых видов продукции, отработки технологии прокатки новых сплавов на помощь приходит тензометрический датчик.

Принцип действия пьезодатчиков основан на упругой деформации пластинки из арсенида галлия или сапфира, на которую передается давление. При деформации пластинки меняется ее сопротивление. Сама пластинка предсталяет собой одно из плеч моста сопротивления, к которому подводится постоянный ток. При изменении сопротивления одного из его элементов происходит разбаланс мостовой схемы

Рисунок 10. Пьезодатчик


и на выходе появляется сигнал, величина которого может быть измерена милливольтметром. Величина сигнала линейно зависит от давления. Выпускаются датчики на различные интервалы давления. Точность измерения давления составляет около 0.1 относительных %. В отличие от манометров эти датчики имеют постоянную точность замеров давления во всем интервале рабочих параметров. В этом состоит их главное преимущество, кроме того, малые габариты, стабильность в работе и простота эксплуатации делают их весьма перспективными для использования в установках высокого давления. Кроме того, важно отметить, что выдаваемый ими сигнал легко регистрировать всеми типами электронных записывающих устройств - начиная от самопишущих потенциометров и кончая компьютерами.


Заключение.

Электроупругость - это научное направление в естествознании, которое занимается исследованием проблем, находящихся на стыке двух классических научных направлений: механики твердого деформированного тела и электродинамики (электростатики) сплошных сред.

Сегодня это направление является одним из ведущих и стоит в одном ряду с нанотехнологиями. Область практического применения приборов и устройств, использующих в своих конструкциях пьезоэффект, постоянно расширяется, а некоторые изделия, как, например, пьезозажигалки, стали предметами повседневного быта. Пьезоэлементы используются в телевизорах и телефонах, которые также можно отнести к предметам повседневного быта. Функциональные назначения пьезоэлементов в пьезозажигалке, телевизоре и телефоне различны, однако в основе их устройств лежит одно и то же физическое явление.

Пьезоэффект как физическое явление в школьном курсе физики не рассматривается и поэтому мне было очень интересно, но в то же время трудно самостоятельно разбираться в этом вопросе.

Оказалось, что пьезоэффекту уделяют внимание не только как к физическому явлению, но в большей мере он интересует людей разных специальностей и профессий и именно с практической точки зрения, экономический эффект его использования очень велик.

Работа над проектом мне дала многое. Хотя бы начать с того, что мне пришлось изучить много теоретического материала, а значит, полагаю, научился извлекать информацию с бумажных носителей – книг. При проведении эксперимента мне пришлось побывать на экскурсии на нашем градообразующем предприятии, где в лаборатории УЗК мне не только показали, как тщательно проходит контроль за выпускаемой продукцией, но и провели экскурсию по нескольким цехам, отмечая важность обработки детали на каждой ступени. Я понял, что только в деятельности и только при решении какой-либо общей задачи люди могут всегда найти общий язык, а для достижения результата использовать все имеющиеся возможности.

При выполнении собственного эксперимента я понял, как тяжел путь первооткрывателей, исследователей, людей, занимающихся наукой. Оказывается не всегда можно получить положительный результат эксперимента. Я столкнулся с тем, что даже получившийся опыт не всегда можно зафиксировать из-за слабого или кратковременного эффекта. Кроме того, у меня еще недостаточно знаний, чтобы полно объяснить наблюдаемые явления.

Я думаю, что умение анализировать имеющие факты, умение сопоставлять и прогнозировать, умение находить пути решения возникающих ситуаций – все это приходит с опытом, с практикой. Чтобы приобрести все эти навыки и снова получить удовлетворение от своих маленьких открытий, даже если они уже известны, я постараюсь продолжить обучение в техническом ВУЗе.

Список литературы.

1. Гершензон Е.М., Малов Н.Н. Курс общей физики: Электродинамика: Учеб. пособие для студентов физ.-мат. фак. пед.ин-тов. – 2-е изд., перераб. – М.:Просвещение, 2000.

2. Кабардина С.И. Измерения физичеких величин.Элективный курс: Методическое пособие/С.И. Кабардина, Н.И.Шефер. – М.: БИНОМ.Лаборатория знаний, 2005.

3. Мякишев Г.Я., Синяков А.З. Физика: Электродинамика. 10-11 кл.:учеб. для углубленного изучения физики.-3 изд. М.:Дрофа, 1998.

4. Неразрушающий контроль: Справочник: В 7 т. Под общ. Ред. В.В.Клюева. Т.: В 3 кн. Кн. 2: Ультразвуковой контроль. /М.В.Филинов.-М.: Машиностроение, 2004.

5. Трофимова Т.И. Курс физики: Учеб. Пособие для вузов.-2-е изд., перераб. И доп. –М.: Высш. шк., 1990.

6. Элементарный учебник физики: Учебное пособие. В 3-х т./Под ред. Г.С.Ландсберга. Т.II. Электричество и магнетизм.-10-е изд., перераб.-М.: Наука. Главная редакция физико-математической литературы, 1986.

7. http://www. geo_web_ru.mht Учебник по экспериментальной и технической петрологии - Все о Геологии.