Смекни!
smekni.com

Управление образования Верхнесалдинского городского округа (стр. 1 из 6)

Министерство общего и профессионального образования

Свердловской области

Управление образования Верхнесалдинского городского округа

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа № 2 с углубленным изучением физики, математики, русского языка и литературы»

Пьезоэлектрический эффект: эффектен или эффективен?

Исследовательский проект

(научно – техническое направление)

Исполнитель: Ионкин

Александр

учащийся 11 а класса ОУ №2

Руководитель: Шевчук

Любовь Александровна

Учитель физики, высшая категория

г. Верхняя Салда

2008


Содержание

I. Введение. 3

II. Основная часть 3

1. История открытия и исследования пьезоэлектрического эффекта. 4

2. Лангасит – перспективный пьезоэлектрический материал. 6

3. Физическая теория пьезоэлектрического эффекта. 8

4. Как измерить значение высокого напряжения, возникающего при пьезоэлектрическом эффекте?. 14

5. Применение пьезоэлектрического эффекта. 16

6. Пьезоэффект на службе градообразующего предприятия ОАО «Корпорация ВСМПО – АВИСМА». 25

III.Заключение. 29

Список используемой литературы.. 31


Введение.

«Ощущение тайны – наиболее прекрасное издоступных нам переживаний. Именно эточувство стоит у колыбели истинного искусстваи настоящей науки». Альберт Эйнштейн

Необыкновенная, феноменальная физика? Что может быть в ней такого необыкновенного или удивительного? Конечно, физики считают физику захватывающей наукой, но это потому, что она составляет дело их жизни. Открытие новой субатомной частицы или нахождение нового способа объяснения знакомого явления может привести в сильный трепет. Однако небольшое, но приносящее удовлетворение волнение способно вызвать наблюдение и понимание повседневных явлений природы в окружающем нас мире. Ведь куда занятнее иметь дело с звукозаписью, дистанционными датчиками и зажигалками, если понимать их суть. Поистине удивительны, феноменальны успехи физики в объяснении повседневных явлений.

Мы живем в ХХI веке, веке новых технологий. Жизнь не стоит на месте. Происходит развитие науки, техники, промышленности, технологии и везде используются новейшие подходы к тем или иным процессам. Уже известные, открытые давно и кем-то явления, находят свое новое применение, второе рождение или находят использование в смежных с наукой и техникой областях - архитектуре, строительстве, связи и прочее.

Так и пьезоэлектрический эффект находит широчайшее применение. Мне кажется даже, что есть еще очень много скрытых резервов, ненайденных областей и сфер его применения.

В этом учебном году я начал работать над своим исследовательским проектом по научно-техническому направлению «Пьезоэлектрический эффект: эффектен или эффективен?».

При работе над проектом я ставил перед собой цель: выяснить возможности применения пьезоэлектрического эффекта в различных областях жизнедеятельности человека.Для себя я выделил следующие задачи: - познакомиться с историей открытия и изучения явления пьезоэлектрического эффекта; - рассмотреть теорию пьезоэлектрического эффекта; -познакомиться со сферами применения пьезоэлектрического эффекта; - выполнить опыты по демонстрации прямого и обратного пьезоэффектов и предложить способ определения значения напряжения, возникающего при прямом пьезоэффекте.

История открытия и исследования пьезоэлектрического эффекта.

Пьезоэлектрический эффект был открыт в 1880 году братьями Пьером и Жаком Кюри. Они обнаружили, что если кристаллы некоторых диэлектриков (сегнетовой соли, кварца и др.) подвергнуть механическому воздействию, сжатию, то на их поверхности появляются электрические заряды противоположных знаков, или, как теперь принято говорить, в кристалле возникает наведенная поляризация, которая создает внешнее и внутреннее по отношению к кристаллу электрические поля. Это явление - возникновение электрического поля в результате давления - было названо прямым пьезоэффектом.

Было ли это открытие случайным или ему предшествовала научная гипотеза? При исследовании электрических свойств твердых диэлектриков кристаллической структуры Пьер Кюри сформулировал весьма общий принцип, который теперь называется принципом Кюри. Смысл его состоит в следующем: явление обладает всеми признаками симметрии, которыми обладает причина, их породившая; асимметрия явления предопределена асимметрией причины. Поскольку в вершинах кристаллической решетки расположены ионы противоположных знаков, то суммарный заряд кристаллов любой формы равен нулю. Однако если центры положительных и отрицательных зарядов не совпадают, то дипольный момент кристалла отличен от нуля и обладает поляризацией. Поэтому если дипольный момент кристалла в недеформированном состоянии равен нулю, то в результате деформации кристалла под механическим воздействием центры положительных и отрицательных ионов могут сместиться один относительно другого и на поверхностях кристалла появляются заряды противоположных знаков. Возможность такого смещения зависит от симметрии (формы) кристалла.

Сформулированный принцип и теория групп позволили выделить классы кристаллов, которые обладают пьезоэффектом. Обратный пьезоэффект состоит в том, что свободные кристаллы, обладающие прямым пьезоэффектом, под воздействием электрического поля деформируются. Вскоре братья Кюри экспериментально подтвердили обратный пьезоэффект.

Первые количественные измерения, устанавливающие связь величины заряда с давлением на кристаллах сегнетовой соли, были проведены Поккельсом в 1894 году.

В математическую форму эти количественные соотношения были облечены немецким ученым Фойгтом (Voigt) в 1910 году. В 1928 году он привел достаточно полную систему этих соотношений, которая обобщала накопленные знания в области пьезоэлектричества за предшествующий период. Соотношения, полученные Фойгтом, являются


основополагающими для построения математической модели в электроупругости.

Сразу же широкое применение пьезоэффект находит в грамзаписи, а на производстве — в многочисленных пьезодатчиках систем контроля и управления.

С середины 30−х годов XX века пьезоэлементы начинают применять в радиолокационных системах: специальные резонаторы и фильтры, изготовленные из природного кварца, выделяли из широкого спектра радиоволну, отраженную от цели, и усиливали ее. В этих устройствах работал уже принцип обратного пьезоэффекта: при подаче на пьезоэлектрик электрического тока кристалл деформировался и в нем возникали колебания, резонирующие с волной, пропускаемой фильтром частоты. Во время второй мировой войны системы ПВО, разработанные англичанами на основе кварцевой пьезоэлектрики, обнаруживали немецкие самолеты на дальних подступах, лишая противника преимущества внезапности. Во многом именно благодаря этому провалился план Геринга разгромить Великобританию силами Люфтваффе.

Развитие авиа— и ракетостроения в 50−60−е годы потребовало массового производства более точных приборов как для бортовых, так и для наземных систем навигации и радиолокации. Подходящего же (без структурных дефектов) природного кварца добывалось совсем немного. Настоящий пьезотехнический бум начался с середины пятидесятых годов, когда научились выращивать искусственный кристалл кварца — впервые это удалось сотруднику Института кристаллографии имени Шубникова АН СССР (ИКАН) Александру Штенбергу.

В конце 60−х годов появляются новые пьезоматериалы — танталат и ниобат лития. Имея высокий коэффициент линейного расширения, они реагируют даже на самые небольшие изменения инфракрасного излучения, и их используют в первую очередь в приборах ночного видения. Но чувствительность к температурным перепадам приводит к возникновению в них паразитных шумов — беспорядочных колебаний различной частоты, — что ограничивает их применение. Тем не менее фильтры из танталата и ниобата лития используются достаточно широко: они стоят в PAL-декодере каждого современного телевизора, в беспроводных компьютерных модемах и мобильных телефонах стандарта CDMA. А на излете советской эпохи появляется новый пьезоэлектрический материал, лишенный недостатков и кварца, и танталата, и ниобата лития.


Лангасит – перспективный пьезоэлектрический материал.

В 1983 году группа советских ученых физфака МГУ и Института кристаллографии выращивают первый кристалл лангасита (лантан галлиевый силикат — La3Ga5SiO14). Первоначально его планировали использовать в качестве активного элемента твердотельных лазеров с изменяемой частотой излучения, некоторые параметры материала не устроили специалистов по нелинейной оптике. Зато его пьезоэлектрические качества оказались настолько перспективными, что в немыслимые по тем временам сроки, уже через два года после открытия, началось производство кристаллов лангасита на нескольких растовых установках Подольского опытно-химического завода (кураторами выступали специалисты кафедр кристаллографии МИСиСа и ИКАНа). Тогда же «Фонон» — головной институт по разработке пьезотехники, незадолго до того отпочковавшийся от столичного предприятия «Пьезо», получил задание разработать приборы на лангасите для головок наведения ракет.

Интерес к лангаситу был вызван тем, что он имел более широкую полосу пропускания по сравнению с кварцем и в то же время в отличие от танталата и ниобата лития обладал температурной стабильностью. Ширина пропускания характеризуется спектром сопутствующих основной волне частот, и чем шире полоса пропускания полезного сигнала в усилителях промежуточных частот, тем больший объем цифровой информации может обработать приемопередающая радиоаппаратура и, соответственно, выдать более точные координаты быстролетящей цели. Важность миниатюрных широкополосных фильтров трудно переоценить, когда речь заходит, например, о сотовой связи. Так, для работы телефонов распространенного сейчас стандарта GSM (передача речи и стационарных картинок) требуется полоса пропускания всего в 200 кГц, а для W-CDMA, которому прочат роль всемирного стандарта следующего поколения, поскольку он позволяет передавать видеоизображение в режиме реального времени, необходима полоса шириной уже более 5 МГц. То есть при частоте базовой волны в 2 ГГц показатель ширины пропускания фильтра должен быть выше 0,3%. У кварца показатель ширины пропускания в зависимости от частоты основной волны составляет 0,1−0,3%, у лангасита — от 0,3 до 1%.