ГОУ ГИМНАЗИЯ № 1505
«МОСКОВСКАЯ ГОРОДСКАЯ ПЕДАГОГИЧЕСКАЯ
ГИМНАЗИЯ – ЛАБОРАТОРИЯ»
Реферат по теме:
ученица 9 класса «Б»
Корнеева Ольга
Руководитель – Давыдочкина С. В.
Москва, 2011 г.
Введение……………………………………………………………………..………………стр. 3
§ 1. Теоретические знания о тепловом эффекте. Основные понятия термодинамики. Тепловой эффект химических реакций. Законы термохимии………………………………….……….……...…………………….....….….стр. 4
§ 2. Экспериментальное определение теплового эффекта………………………..…..стр. 10
§ 3. Применение теплового эффекта на практике. Химические «грелки» и охлаждающие пакеты. Жаропрочные покрытия. Термохимический способ обработки алмаза………………………………………………………………………………………...стр.
Заключение…………………………………………………………………..……………стр. 13
Список литературы…………………………………………………………….…………стр. 14
Как известно, жизнь на Земле невозможна без протекания химических реакций. Они составляют основу создания и существования большинства современных предметов. Без химических реакций нашу планету не защищал бы озоновый слой, в недрах земли не скрывались бы полезные ископаемые. Поэтому химические реакции – одна из самых важных вещей на Земле, а их изучение – сложный, но очень полезный процесс.
Но охватить всю суть химических реакций в одном реферате невозможно. Можно лишь описать какую-то их сторону. Именно поэтому я и выбрала в качестве темы своего исследования, наверное, один из самых интересных и уж точно один из самых важных аспектов химических реакций – тепловой эффект.
Тепловые эффекты химических реакций необходимы для многих технических расчетов. Они находят обширное применение во многих отраслях промышленности, а также в военных разработках. Знание теплового эффекта также важно для решения многих практических задач. Посредством химических реакций с тепловым эффектом в наших квартирах горит газ, идет горячая вода, есть электричество, благодаря именно этому типу химических реакция ездят наши автомобили, летают ракеты и самолеты. Все реакции горения – суть тепловые реакции. Порох, огнестрельное оружие, сварка и резка металлов, промышленные лазеры… Химические реакции везде.
Иными словами, химические реакции c тепловым эффектом вошли в современную жизнь человека и общества. Именно потому, что сейчас они являются неотъемлемой частью нашей жизни, и следует обратить особое внимание на эту тему. Именно поэтому эта тема выбрана нами для написания реферата.
Цель исследования – разносторонне изучить и явление теплового эффекта и возможность его применения на практике. Этой цели можно достигнуть, решив несколько поставленных нами задач:
1. Познакомиться с понятием термодинамики и ее основными аспектами;
2. Изучить раздел термодинамики, называемый термохимией;
3. Понять, что такое тепловой эффект и каково его значение в химии;
4. Узнать о разных способах применения полученных знаний в жизни.
Основные понятия термодинамики.
Термодинамика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел прикладной физики или теоретической теплотехники, в котором исследуется превращение движения в теплоту и наоборот. В термодинамике рассматриваются не только вопросы распространения теплоты, но и физические и химические изменения, связанные с поглощением теплоты веществом, а также, наоборот, выделение теплоты в ходе физических и химических превращений.[1]
Термодинамика исторически возникла как эмпирическая (экспериментальная) наука об основных способах преобразования внутренней энергии тел для совершения механической работы. Однако в процессе своего развития термодинамика проникла во все разделы физики, где возможно ввести понятие «температура» и позволила теоретически предсказать многие явления задолго до появления строгой теории этих явлений.
Химическая термодинамика изучает взаимные превращения теплоты и энергии в химических системах и описывает состояние химического равновесия. Она позволяет судить о том, при каких условиях возможна та или иная реакция.[2]
В данной главе мы познакомимся с основными законами и понятиями термодинамики.
Термодинамические превращения подчиняются основным законам термодинамики – термодинамическим началам. Всего их 3, плюс примечание, называемое также нулевым началом термодинамики.
Первое начало термодинамики - закон сохранения энергии для термодинамических процессов. Он гласит:
Энергия не возникает из ничего и не исчезает бесследно, а только переходит из одной формы в другую.
Энергия бывает разной. В курсе физики рассматривают такие ее виды, как, например, потенциальная и кинетическая. В химии важнее внутренняя энергия веществ (энергия движения их молекул и атомов). Изменение внутренней энергии веществ в ходе химических реакций гораздо больше изменения их потенциальной и кинетической энергии. Поэтому при проведении лабораторных опытов мы не кидаемся пробирками с веществами для большего изменения их энергии (что нужно нам для проведения реакции), а используем другие способы. Часть внутренней энергии, связанная с движением электронов в атомах, называется химической энергией.
Кроме того, в химических реакциях важно знать тепловую энергию веществ. Так называют суммарную энергию атомов в молекуле и молекул в целом. Мерой тепловой энергии является температура тела. Кроме того, она зависит и от агрегатного состояния вещества, и от типа молекул. Тепловая энергия выделяется, например, когда химическая энергия исходных веществ в ходе химической реакции больше, чем энергия продуктов.
Закон сохранения энергии для химических реакций гласит:
Тепловая энергия, выделившаяся в ходе химической реакции, равна изменению химической энергии.
Второе начало термодинамики имеет несколько различных, но в то же время эквивалентных формулировок.
1 — Постулат Клаузиуса[3]. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких-либо других изменений в системе. Это явление называют рассеиванием, или диссипацией, энергии.
2 — Постулат Кельвина[4]. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.
Химические реакции с тепловым эффектом – это так называемые самопроизвольные процессы, то есть идущие сами по себе. К таким процессам относятся и экзотермические, и эндотермические реакции.
Однако после проведения ряда экспериментов было установлено, что существуют факторы, определяющие направление самопроизвольных реакций.
В экзотермических реакциях выделяющееся тепло нагревает реагенты, таким образом продляя время протекания реакции, к тому же, нам известно, что в экзотермических реакциях энергия уменьшается. Таким образом, химические реакции идут самопроизвольно в сторону уменьшения энергии веществ.
Но многие реакции разложения (эндотермические по типу) тоже могут идти самопроизвольно, значит, уменьшение энергии – не единственный фактор.
Оказывается, немаловажную роль играет также то, как энергия распределена в веществах – равномерно или собрана где-то в одном месте. Самопроизвольные процессы сопровождаются рассеиванием энергии и превращением ее в более неупорядоченную форму. Степень беспорядка характеризуется специальной величиной, которая называется энтропия. [5]Энтропия (от греч. ξντροπία — поворот, превращение) – в естественных науках — мера беспорядка системы, состоящей из многих элементов.
Энтропия обозначается знаком S.
Рудольф Клаузиус впервые ввел это слово в термодинамике в 1865 году. В термодинамике оно означает меру необратимого рассеивания энергии, меру отклонения реального процесса от идеального.
Чем равномернее распределение всех свойств системы (энергии, давления, температуры и т. д.), тем больше энтропия. В направлении увеличения энтропии и происходят все самопроизвольные процессы.
Поэтому второе начало термодинамики в целом формулируется так:
В изолированных системах самопроизвольные процессы могут протекать только с увеличением энтропии. При обратимых процессах энтропия не изменяется.
Третье начало термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю.
Существует также примечание к началам, или нулевой закон термодинамики.
Нулевое начало термодинамики гласит:
Для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, которого она при фиксированных внешних условиях с течением времени самопроизвольно достигает.
При расчетах химических реакций химикам важно знать эти законы.
Термодинамика содержит множество формул, описывающих преобразования энергии в ходе химических реакций, и все они подчиняются основным законам, речь о которых шла в данной главе.
Ни одна химическая реакция не проходит без затрат или выделения определенного количества энергии или тепла. Это происходит оттого, что в каждом веществе изначально присутствует некое количество энергии. Причем в разных веществах это количество разное.