Основная часть урока отводится обобщению и систематизации знаний на основе ведущих идей курса, составлению схемы классификации и установления взаимосвязи веществ разных классов.
Специфические (особенные) свойства каждого класса рассматриваются со всеобщими признаками (состав, строение, свойства) и учетом индивидуальных признаков их представителей.
По анализу состава как классификационного признака вещества делятся на простые и сложные. Учащиеся приводят определения, примеры и описания простых и сложных веществ. Сложные вещества разделяются на классы. Учащиеся дают их характеристику, указывают признаки деления, приводят доказательства принадлежности тех или иных веществ к определенному классу соединений, раскрывают общие свойства класса, противопоставляют свойства веществ, относящихся к одному классу, но разным его группам. Итогом систематизации этих знаний является схема классификации неорганических веществ.
Следующая часть урока отводится установлению взаимосвязи между соединениями разных классов. Сначала проблемно устанавливаются генетические связи, затем проводится постановка проблемы: можно ли с помощью химических реакций перейти от простых веществ к сложным и от одного класса соединения к другим? Учащиеся высказывают предположения о возможности таких переходов, составляют схемы превращений, конкретизируют их уравнениями реальных реакций, подтверждают некоторые из них опытами, устанавливают генетические связи веществ. Пример схемы превращений: Ca->CaO-Ca(OH)2—CaSО4.
Цепь этих превращений показывается экспериментально. Аналогично исследуются возможности подобных превращений неметаллов на примере серы или фосфора. С помощью конкретных и общих схем генетических связей соединяют цепи превращения металлов и неметаллов между собой:
Ca->CaO->-Ca(OH)2 . Me-*-MeO-*Me(OH)s
S -»• SO2 -> H2SO3 ‘ HeMe-* неМеО--> НхНеМеОу
Важно использовать не только прямые переходы от простых веществ к сложным, но и обратные, от сложных к простым:
Cu(OH)2-»-CuO->Cu.
Необходимо также раскрыть взаимосвязь между веществам: разных классов .
Учащимся задается вопрос: могут ли существовать связи между веществами, разными по составу и свойствам? Учащиеся приводят примеры, доказывающие наличие таких связей На основе схем генетических связей составляют схему взаимосвязи веществ разных классов, записывают уравнения, подтверждающие их. Делают общий вывод: между различными элементами и их соединениями существует взаимосвязь. Она проявляется в процессе взаимодействия веществ и активно используется в практической деятельности человека.
При выполнении упражнений следует широко использовать диалектический принцип «оборачиваемости метода». В данном случае он проявляется в том, что свойства одного вещества или целого класса одновременно рассматриваются и как основа применения этого вещества, и как способ получения других веществ.
Приведем примеры подобных упражнений:
Используя оксид кальция, раскройте общие признаки этой группы веществ и установите взаимосвязи его состава, свойств и применения.
Напишите уравнения реакций, с помощью которых можно осуществить
следующие превращения:
Ва -> ВаО -> Ва(ОН)2 -»• ВаС12.
Укажите условия их протекания.
3. С какими из перечисленных веществ: CaO, Р2О5, MgO, CO2, Ва(ОН)2 —
будут реагировать: а) вода, б) гидроксид натрия, в) соляная кислота? Запиши
те уравнения возможных реакций и дайте объяснение указанным взаимодействиям.
3. ОБРАЗОВАНИЕ СИСТЕМЫ ПОНЯТИЙ О ВЕЩЕСТВЕ
ПРИ ИЗУЧЕНИИ ПЕРИОДИЧЕСКОГО ЗАКОНА И ПЕРИОДИЧЕСКОЙ
СИСТЕМЫ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА,
ТЕОРИИ СТРОЕНИЯ ВЕЩЕСТВ
При изучении этого центрального вопроса курса химии учащиеся должны усвоить систему понятий о веществе на уровне осознания ее абстрактного инварианта. Для этого необходимо обеспечить:
1) усвоение ведущих идей курса: периодичности и зависимости
свойств веществ от их строения (структуры);
2) овладение современным понятием «химический элемент»;
3) понимание сути периодического закона и периодической
системы как научного обобщения и систематизации химически знаний;
4) осознание причин, механизмов образования, важнейших
характеристик разных видов химической связи и типов кристалли-
ческих решеток, понимание уровней усложнения химической организации веществ;
5) содержательное обобщение отдельных понятий о веществе
и его строении в теоретическую систему, усвоение ее инварианта;
осознание функций и перспектив развития данной системы.
Изучению периодического закона и периодической систем предшествует обобщение материала о классификации элементов, их оксидов и гидроксидов. Этот материал расширяется включением знаний о явлении амфотерности. Учащиеся знакомятся с ним на примере экспериментального исследования свойств гидроксида цинка. Чтобы у них не сложилось мнения, что амфотерность — индивидуальная особенность оксида и гидроксида цинка, следует этот материал дополнить примерами других оксидов, гидроксидов, обладающих амфотерными свойствами (алюминия, сурьмы (III), олова (II) и др.). Знакомство с амфотерностью направлено на то, чтобы убедить учащихся в условности деления элементов и простых веществ на металлы и неметаллы, показать, что многие их оксиды и гидроксиды обладают свойством амфотерности. Составленная ранее схема классификации оксидов и гидроксидов дополняется группами амфотерных соединений.
Важной предпосылкой понимания методологии открытия периодического закона и периодических закономерностей является изучение доменделеевских классификаций элементов в сравнении с подходом к решению этого вопроса Д. И. Менделеева, ; также знакомство учащихся с некоторыми естественными семействами элементов.
Уроки по теме: «Естественные семейства элементов (галогены щелочные металлы, инертные элементы)».
Цели уроков: 1. Показать недостаточность классификации элементе на металлы и неметаллы, дальнейшие попытки систематизации элементов путем выделения естественных их семейств. 2. Сформировать понятие о естественной группе элементов. 3. Установить закономерности изменения свойств элементов внутри группы (семейства), подвести учащихся к выводу об атомной массе как важнейшей характеристике атомов элементов.
Выявленные закономерности внутри семейства обобщаются.
1. Естественные группы элементов объединяют сходные по свойствам
элементы.
2. Внутри групп у элементов прослеживается изменение относительной
атомной массы (Аг) и связанное с ней изменение физических свойств.
3. При проявлении сходных химических свойств элементами одного семейства химическая активность каждого из них закономерно различна: по мере возрастания Аг у щелочных металлов она увеличивается, а у галогенов падав!
4. Элементы, относящиеся к одному семейству, проявляют сходные валентности в кислородных и водородных соединениях.
5. Элементы всех рассмотренных групп, несмотря на их существенные различия, имеют общую количественную характеристику — относительную атомную массу и проявляют общую закономерность: зависимость их свойств от Аг и их изменений в группах в связи с увеличением относительной атомной массы.
Изучение периодического закона и периодической системы химических элементов Д. И. Менделеева на основе теории строения атома существенно пополняет знания учащихся о составе и структуре вещества. Атомы рассматриваются здесь как целостные ядерно-электронные образования с определенным внутренним строением и свойствами. Анализируя состав атомов, выделяют три его основные частицы: протоны, нейтроны и электроны, а при рассмотрении строения атомов — их электронную структуру (конфигурацию). Внимание учащихся обращаем на то, что неглубокие изменения внешних электронных оболочек атомов, при сохранении их атомного остова, приводят к разным валентным состояниям атомов, к образованию разных дискретных форм вещества (атомов, ионов и других атомных частиц). Важнейшим свойством атомов является их способность к образованию химических связей, химических соединений определенных форм и состава. Понятие «форма соединения» введено в химию Д. И. Менделеевым. Оно отражает определенные сочетания атомов в соединениях как формах существования элементов. В обобщенном виде это понятие характеризует состав типичных соединений определенных групп элементов. Д. И. Менделеев придавал особое значение этому понятию в понимании явлений периодичности и включал его в состав формулировки периодического закона. При рассмотрении характеристики элементов и раскрытии периодических закономерностей большую роль играет определение форм высших кислородных и водородных соединений элементов, которым соответствуют их общие формулы типа: R2O3, HRO3, RH3 и другие. Подчеркивая абстрактность и наглядность последних, Д. И. Менделеев отмечал, что они дают возможность сравнивать элементы абсолютно легко, а группы аналогов — элементов кажутся совершенно ясными и очевидными. «Форм окислов восемь, а потому и групп восемь»,— писал Д. И. Менделеев.
Знания о составе и строении атомов, о составе и форме химических соединений элементов имеют принципиальное значение для формирования понятия «химический элемент», для осознания его природы, которая, по мнению Б. М. Кедрова, находит свое выражение в таком содержательном признаке его, как «место элемента в периодической системе».
Следует обратить внимание учащихся на различия в подходах к систематизации элементов Д. И. Менделеевым и его предшественниками. На основе обсуждения данных вопросов учащиеся могут их указать самостоятельно.