Смекни!
smekni.com

Практикум предназначен для студентов 2, 3, 4 курсов технологических специальностей, всех форм обучения. Авторы: Панов Валерий Петрович (стр. 14 из 16)


2,4-диенол-СоА

редуктаза

еноил-СоА

изомераза

b-окисление

(4 цикла)

5 молекул ацетил-СоА

Таким образом при метаболизме линолевой кислоты образуется 9 молекул ацетил-СоА.

Вопросы для самоконтроля

1. Энергия триацилглицеролов.

2. Реакции превращения липидов, катализируемые ферментами.

3. Продукты метаболизма липидов.

Тестовые вопросы

1. Перечислите основные продукты распада жиров?

а) СО2 и Н2О;

б) С6Н12О6;

в) Н2О;

г) АТФ.

2. Где происходит переваривание жиров в организме?

а) тонкий кишечник;

б) толстый кишечник;

в) печень.

3. Какие ферменты участвуют в гидролитическом расщепление жира?

а) липаза;

б) липоксигеназа;

в) дегидрогеназа;

г) синтетаза.

4. Из каких органических веществ состоит молекула жира?

а) жирные кислоты и многоатомный спирт;

б) жирные кислоты и азотистые основания;

в) фосфорная кислота и многоатомный спирт.

5. Чем отличаются предельные жирные кислоты от непредельных жирных кислот, входящие в молекуле жира?

а) нет двойных связей;

б) имеются двойные связи;

в) имеются двойные и пептидные связи.

ТЕМА 14. ОБМЕН БЕЛКОВ

Переваривание белков, их ферментативный гидролиз с образованием полипептидов, а затем аминокислот происходит в желудке и в тонких кишках, т.к. в слюне отсутствуют ферменты протеазы. Белки пищи подвергаются в желудке воздействию желудочного сока - соляной кислоты и фермента пепсина, а в кишечнике - воздействию ферментов трипсина и химотрипсина.

Трипсин,

Пепсин химотрипсин


БЕЛОК ПОЛИПЕПТИДЫ ПЕПТИДЫ АМИНОКИСЛОТЫ

рН 1,5-2 рН 7,5-8

(желудок) (кишечник)

Синтез белков

АМИНОКИСЛОТЫ Образование гормонов

Образование конечных продуктов азотистого обмена

Аминокислоты в организме претерпевают разнообразные ферментативные превращения, в результате которых неиспользованная для синтеза белков и других азотсодержащих веществ часть аминокислот подвергается глубокому распаду с образованием конечных продуктов: NH3, СО2 и H2O и освобождением энергии.

После приема с пищей белков, а также введения в организм аминокислот (в частности при парентеральном питании), весь входящий в их состав азот выделяется в виде мочевины. Под действием оксидаз идет реакция дезаминирования аминокислот.

оксидаза

a-кетокислота

Превращение всех аминокислот объединяет важная реакция переаминирования.


аминотрансфераза

Общим для многих аминокислот является процесс их декарбоксилирования.


декарбоксилаза

- СО2

Вопросы для самоконтроля

1. Роль информационной РНК при синтезе белка.

2. Ферменты – участники синтеза белков.

Тестовые вопросы

1. Назовите основные продукты обмена белков:

а) аминокислота;

б) жиры;

в) углеводы.

2. Какой фермент гидролизует белок?

а) пепсин;

б) дегидрогеназа;

в) амилаза;

г) липаза.

3. Какой основной продукт образуется при дезаминировании аминокислот?

а) NH3;

б) СООН;

в) Н2О;

г) О2.

4. Какой фермент катализирует реакцию декарбоксилирования аминокислот?

а) декарбоксилаза;

б) липаза;

в) гидролиза;

г) трансфераза.

5. Какой фермент катализирует реакцию переаминирования?

а) трасфераза;

б) гидролиза;

в) синтетаза.

ТЕМА 15. ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ

Существенной характеристикой мультиклеточных организмов является дифференциация клеток и разделение их по виду деятельности. В дополнение к центральным циклам преобразования энергии и вещества, которые имеют место в каждой клетке, органы и ткани сложных организмов, в частности человека, имеют специальные функции и как следствие характеристические требования к питательным веществам и картине метаболизма в целом. Гормональные сигналы интегрируют и координируют метаболическую активность различных тканей, разносят информацию о размещении и распределении энергоемких веществ и веществ-предшественников синтеза биологических макромолекул к каждому органу.

Каждый орган и ткань человеческого тела имеют специализированную функцию, которая отражается в его анатомии и метаболической активности. Скелетные мышцы, используя метаболическую энергию, производят движение, жировая ткань сохраняет жиры, которые служат для запаса энергии, специальные разделы мозга продуцируют электрические сигналы. Печень играет роль центрального химического процессора и распределителя в процессе метаболизма, поставщика смеси питательных веществ посредством кровеносного русла. Глюкоза, поступающая в печень, под действием фермента глюкокиназы фосфорилируется до глюкозы-6-фосфата.

Путь метаболизма глюкоза-6-фосфата в печени

Гликоген печени


Триацилглицеролы,

Фосфолипиды НАДФН

Гликолиз

Жирные кислоты Холестерол Пуриват Нуклеотиды

Ацил-СоА Рибоза-5-фосфат


АДФ+Р АТФ


е-

СО2 О2 Н2О

окислительное

фосфорилирование

Глюкоза-6-фосфат дефосфорилируется под действием фермента глюкозы-6-фосфотазы с образованием глюкозы, которая поступает в кровь. Выброс глюкозы в кровь должен регулироваться, т.к. концентрация глюкозы должна быть достаточно высокой, чтобы обеспечить энергией мозг и другие органы. Глюкоза-6-фосфат, которая не востребована для немедленного преобразования в глюкозу, превращается в печени в гликоген. Избыточное количество глюкозы-6-фосфата подвергается гликолизу, под действием фермента пуриват дегидрогеназы преобразуется в ацетил-СоА, который служит предшественником синтеза липидов: образуются жирные кислоты, которые переводятся в триацилглицеролы, фосфолипиды и холестерол.

Многие липиды, синтезируемые в печени, переносятся в другие органы, посредством связывания с липопротеинами крови. И окончательно глюкоза-6-фосфат служит субстратом для синтеза из фосфата пентозы обогащенного энергией НАДФН, который необходим для биосинтеза жирных кислот и холестерола, а также D-рибозы-5-фосфата, который является предшественником нуклеотидного биосинтеза.

Аминокислоты, поступающие в печень, имеют несколько важнейших путей метаболиэма, в результате которых образуются предшественники синтеза белков в гепатоцитах. Печень постоянно обновляет свои собственные белки, время жизни которых только несколько дней. В печени осуществляется биосинтез белков плазмы крови. Отдельные аминокислоты, попадая в печень, участвуют в биосинтезе нуклеотидов, гормонов и других азотистых соединений.

Жирнокислотные компоненты липидов также участвуют в различных путях преобразования. Жирные кислоты преобразуются в липиды печени, превращаются в фосфолипиды и триацилглицеролы плазматических липопротеинов, связываются с альбумином и переносятся по кровеносному руслу к сердцу и мышцам для окисления в них в качестве источников энергии.