Аминокислоты с неполярными алифатическими R-группами
глицин аланин валин
лейцин изолейцин пролин
Аминокислоты с ароматическими R-группами
фенилаланин тирозин триптофан
Аминокислоты с полярными незаряженными R-группамисерин треонин цистеин
метионин аспарагин глутамин
Аминокислоты с положительно заряженными R-группамилизин аргинин гистидин
Аминокислоты с отрицательно заряженными R-группами
аспартат глутамат
Триптофан, тирозин и в меньшей степени фенилаланин поглощают в ультрафиолетовом свете. Аспарагин и глутамин являются амидами двух других аминокисдот: аспартата и глутамата. Цистеин легко окисляется с образованием ковалентно связанной димерной аминокислоты, называемой цистином, в котором две цистеиновые молекулы соединены дисульфидным мостиком. Дисульфидные мостики встречаются во многих белках, стабилизируя их структуру.
В дополнение к стандартному набору из 20 аминокислот найдены другие аминокислоты, как компоненты ограниченных типов белков, они образуются в белках путем модификации стандартных аминокислот. Нестандартными аминокислотами являются: 4-гидроксипролин, 5-гидроксилизин, N-метил-лизин, селеноцистеин, орнитин и другие. Аминокислоты могут действовать как кислоты и как основания.
Ионообменная хроматография наиболее широко распространенный метод разделения, идентификации и количественного определения аминокислот в смеси. Эта техника основана на различии зарядов и величин зарядов аминокислот при заданном значении рН и следовательно различной аффинности каждой аминокислоты к ионообменной смоле. Наиболее развитыми методами аминокислотного анализа являются автоматический аминокислотный анализ и высокоэффективная жидкостная хроматография (жидкостная хроматография высокого давления, ЖХВД).
0 5 10 15 20 25 30 35
Аминограмма Время, мин.
1.1. Пептиды.
Две аминокислоты могут ковалентно соединяться посредством пептидной связи с образованием дипептида.
Три аминокислоты могут соединяться посредством двух пептидных связей с образованием трипептида. Несколько аминокислот образуют олигопептиды, большое число аминокислот - полипептиды. Пептиды содержат только одну a-аминогруппу и одну a-карбоксильную группу. Эти группы могут быть ионизованы при определенных значениях рН. Подобно аминокислотам они имеют характеристические кривые титрования и изоэлектрические точки, при которых они не двигаются в электрическом поле.
Подобно другим органическим соединениям пептиды участвуют в химических реакциях, которые определяются наличием функциональных групп: свободной аминогруппой, свободной карбоксигруппой и R-группами. Пептидные связи подвержены гидролизу сильной кислотой (например, 6М НС1) или сильным основанием с образованием аминокислот. Гидролиз пептидных связей - это необходимый этап в определении аминокислотного состава белков. Пептидные связи могут быть разрушены действием ферментов протеаз.
Многие пептиды, встречающиеся в природе, имеют биологическую активность при очень низких концентрациях.
Пептиды - потенциально активные фармацевтические препараты, есть три способа их получения:
1) выделение из органов и тканей;
2) генетическая инженерия;
3) прямой химический синтез.
В последнем случае высокие требования предъявляются к выходу продуктов на всех промежуточных стадиях.
Вопросы для самоконтроля
1. Связь между структурой и свойствами аминокислот.
2. В какой форме присутствуют молекулы L-аланина в изоэлектрической точке?
3. Сколько хиральных центров имеет L-изолейцин?