Смекни!
smekni.com

ы, контрольные, курсовые, дипломные работы. Учебники. Все бесплатно (стр. 2 из 10)

4. В реляционных базах данных удается легко избежать установления ошибочных связей между различными таблицами данных, а необходимый объем памяти сокращен до минимума.

5. Информационные процессы и системы. Основные понятия.

Информационным процессом можно назвать такой процесс, в результате которого осуществляется поиск, сбор, хранение, обработка, кодирование и передача информации. С информационными процессами человек сталкивается с детства. Для того, чтобы получать и передавать сведения, знания, выражать свое мнение, людям необходимо общаться друг с другом. Это называется коммуникацией и является основой информационных процессов в обществе.

Информационные системы - раздел информатики, связанный с решением вопросов по анализу потоков информации в различных сложных системах, их оптимизации, структурировании, принципах хранения и поиска информации. Информационно-справочные системы, информационно-поисковые системы, гигантские современные глобальные системы хранения и поиска информации (включая широко известный Internet) в последнее время привлекают внимание все большего круга пользователей. Без теоретического обоснования принципиальных решений в океане информации можно просто захлебнуться. Известным примером решения проблемы на глобальном уровне может служить гипертекстовая поисковая система WWW, а на значительно более низком уровне - справочная система, к услугам которой мы прибегаем, набрав телефонный номер 118 (бывшая 09).

6. Информационные ресурсы. Определения и понятия.

Одним из важнейших понятий в информатике является понятие информационного ресурса (ИР). (Ресурс - запас, источник чего-либо).

В индустриальном обществе известно несколько основных видов ресурсов: материальные, природные, трудовые, финансовые, энергетические. В информационном обществе акцент внимания смещается на информационный ресурс, который всегда существовал, но не рассматривался как экономическая категория.

В настоящее время не выработано абсолютно точного единого определения ИР. Приведем несколько из принятых определений.

ИР - знания, подготовленные людьми для социального использования в обществе и зафиксированные на материальном носителе. Эти знания материализованы в виде документов, баз данных, баз знаний, алгоритмов, компьютерных программ, произведений искусства, литературы, науки.

ИР - документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках данных и др. информационных системах). Документ - материальный объект с зафиксированной на нем информацией в виде текста, звукозаписи или изображения, предназначенный для передачи во времени и пространстве в целях хранения и общего пользования.

В настоящее время не разработана методология количественной и качественной оценки ИР, а также прогнозирования потребностей в них. Это снижает эффективность информации, накапливаемой ИР. ИР страны, региона, организации являются стратегическими ресурсами, аналогичными по значимости запасам сырья, энергии и т.д.

7. Информационные технологии. Определения и понятия.

Согласно определению, принятому ЮНЕСКО, информационная технология - это комплекс взаимосвязанных, научных, технологических или инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов. Информационная технология (ИТ) - совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления. Информационной технологии присущи следующие свойства:

· высокая степень расчлененности процесса на стадии, что открывает новые возможности для его рационализации и перевода на выполнение с помощью машин. Это - важнейшая характеристика машинизированного технологического процесса;

· системная полнота (целостность) процесса, который должен включать весь набор элементов, обеспечивающих необходимую завершенность действий человека при достижении поставленной цели;

· регулярность процесса и однозначность его фаз, позволяющие применять средние величины при их характеристике, и, следовательно, допускающие их стандартизацию и унификацию. В результате появляется возможность учета, планирования, диспетчеризации информационных процессов.

8. Кибернетика. Определения и понятия.

Кибернетика (от греч. kybernetike - искусство управления) – наука об управлении, связи и переработке информации. Основной объект исследования - кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро кибернетики составляют информации теория, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (1948) связано с созданием в 40-х годах XX века этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники.

9. Понятие о кодировании информации. Коды и форматы для обмена информацией.

Для определения количества информации нужно найти способ представить любую ее форму (символьную, текстовую, графическую) в едином виде - т.е. суметь эти формы информации преобразовать так, чтобы она получила единый стандартный вид. Таким видом стала так называемая двоичная форма представления информации. Она заключается в записи любой информации в виде последовательности только двух символов. Эти символы могут на бумаге обозначаться любым способом: буквами А, Б; словами ДА, НЕТ. Однако ради простоты записи взяты цифры 1 и 0. В электронном аппарате, хранящем либо обрабатывающем информацию, рассматриваемые символы могут также обозначаться по-разному: один из них - наличием в рассматриваемой точке электрического тока либо магнитного поля, второй - отсутствием в этой точке электрического тока либо магнитного поля. Вся информация, которая попадает в компьютер, преобразуется в последовательность электрических импульсов. Наличие импульса принято обозначать (1), а его отсутствие (0). Такая последовательность 1 и 0 называется машинным языком, а способ кодирования - двоичным (бинарным) языком. Минимальная "ячейка" памяти, которая может принимать одно из двух устойчивых состояний, 1 или 0 - называется 1 бит информации. Таким образом, количество информации в битах равно количеству цифр двоичного машинного кода. Рассмотренный процесс получения двоичной информации об объектах исследования называют кодированием информации. Кодирование информации перечислением всех возможных событий очень трудоемко. Поэтому на практике кодирование осуществляется более простым способом. Он основан на том, что один разряд последовательности двоичных цифр имеет уже вдвое больше различных значений - 00, 01, 10, 11,- чем одноразрядная (0 и 1). Трехразрядная последовательность имеет также вдвое больше значений - 000, 001, 010, 011, 100, 101, 110, 111, - чем двухразрядная, и т.д. Добавление одного разряда увеличивает число значений вдвое.

Таким образом, информация описывается многоразрядными последовательностями двоичных чисел. Поэтому для удобства эти последовательности объединяются в группы по 8 бит. Такая группа именуется байтом, например число - 11010011 - эта информация величиной один байт.

Компьютеры могут обрабатывать только информацию, представленную в специально закодированной числовой форме. При вводе документов, текстов вводимые символы кодируются определенными числами, а при выводе их для чтения человеком по каждому числу строится изображение символа. Соответствие между набором символов и их кодами называется кодировкой символов. Как правило, код символа храниться в одном байте, поэтому коды символов могут принимать значения от 0 до 255, Такие кодировки называются однобайтными, они позволяют использовать до 256 различных символов. Впрочем, в настоящее время все большее распространение приобретает двухбайтовая кодировка Unicode (256 х 256), в ней коды символов могут принимать значения от 0 до 65535. В этой кодировке имеются номера для практически всех применяемых символов. При разработке IBM РС фирма IBM заложила в эти компьютеры (точнее, в знакогенераторы видеоконтроллеров) кодировку символов. Так при выводе на экран символа с кодом 74 на экране изображалась буква j, при выводе символа с кодом 171 - дробь и т. д. Разумеется, производители принтеров и других устройств также стали следовать предложенной фирмой IBM кодировке, так что она стала фактически стандартом. В кодировке IBM символы с кодами 32-127 соответствовали общеупотребительной кодировке ASCII, содержащей латинские буквы, знаки препинания, скобки, специальные знаки и пробел. А на позициях 128-255 и 0-31 фирма IBM поместила символы западноевропейских алфавитов, символы псевдографики, позволяющие рисовать на экране рамке и диаграммы, некоторые греческие буквы и специальные символы. Поскольку в кодировке IBM отсутствуют символы кириллицы, то в нашей стране были созданы различные модификации таблицы кодов IBM, содержащие символы кириллицы. Некоторое время применялось несколько разных таблиц кодировок, что создавало значительные неудобства. Однако очень скоро подавляющим большинством пользователей стала применяться кодировка, так называемая «модифицированная альтернативная кодировка ГОСТа». В этой кодировке русские буквы расположены на тех позициях, где в кодировке IBM находятся относительно редко используемые символы национальных алфавитов и греческие буквы. А остальные символы имеют те же коды, что в кодировке символов IBM, что обеспечивает возможность использования зарубежных DOS-программ без изменений. В графической среде Windows кодовые таблицы, разработанные для IBM РС, являются во многом морально устаревшими. Действительно, в \ Windows, как правило, не требуются псевдографические символы, использовавшиеся в текстовом режиме DOS-программ для рисования линий и диаграмм: в Windows можно нарисовать любые линии непосредственно. С другой стороны, в кодовой таблице IBM РС не хватало многих символов европейских языков. Поэтому фирма Microsoft разработала для Windows новую кодовую таблицу. Эта кодировка называется ANSI-кодировкой, она используется для всех текстовых шрифтов в английской версии Windows. Для русскоязычных пользователей стандартная ANSI-кодировка тоже непригодна, так как она не содержит русских букв. Поэтому в русской версии Windows, разработанной фирмой Microsoft, а так же при использовании различных русификаторов Windows употребляется модифицированная, «русская» версия ANSI-таблицы. Данная кодировка используется в Windows для всех текстовых шрифтов, содержащих русские буквы.