По команде Place>No connect или нажатием на кнопку Ц панели инструментов наносятся символы отсутствия соединений No-connect (NC), которые на схеме отображаются в виде символов «X», подсоединенных к выводам компонентов. Выводы, помеченные такими символами, не включаются в отчеты сообщений об ошибках и в списки соединений. Символы NC не могут быть удалены нажатием на клавишу [Delete], для их удаления нужно поверх символа NC разместить еще один такой же символ.
По команде Place>Off-Page Connector или нажатием на кнопку панели инструментов открывается диалоговое окно для нанесения на схему символов соединителей страниц. В штатной библиотеке CAPSYM.OLB имеются два символа соединителей страниц L и R. На панели Name диалогового окна вводятся имена соединителей страниц, которые автоматически присваиваются именам подсоединяемым к ним цепей. Цепи, расположенные на одной или разных страницах схемы и имеющие одинаковые имена, считаются электрически соединенными.
Проводники цепей размещаются по команде Place>Wire, нажатием комбинации клавиш Shft+W или нажатием на кнопку панели инструментов. Начало ввода цепи отмечается щелчком левой кнопки мыши, поле чего курсор изменяет свою форму, приобретая вид креста. Цепь прокладывается движениями курсора. Каждый излом проводника фиксируется щелчком левой кнопки мыши. Таким образом, в цепи можно сделать ортогональные изломы под углами, кратными 90°. Ввод проводника под произвольным углом производится при нажатой клавише Shift. Ввод текущей цепи завершается, если ее конец совпадает с выводом компонента или любой точкой другой цепи. Принудительное завершение ввода цепи выполняется двойным щелчком левой кнопки мыши, после чего можно провести другой проводник. Режим ввода цепей завершается нажатием клавиши Esc или выбором строки End Wire во всплывающем меню, открываемом щелчком правой кнопки мыши.
Если цепи начинаются или заканчиваются в любой точке сегмента другого проводника или на выводе компонента, между ними устанавливается электрическое соединение. Признаком подсоединения цепи к выводу является изменение его формы — пропадание квадратика на его конце. Пересекающиеся сегменты проводников не соединяются друг с другом. Их соединение выполняется двояко:
Если при размещении компонентов на схеме один или несколько выводов соприкасаются, между ними устанавливается электрическое соединение, и если потом эти компоненты раздвинуть, автоматически прокладывается проводник.
На рисунке 1 представлена полная электрическая принципиальная схема макета для анализа рассматриваемого управителя.
Рисунок 1 – Электрическая принципиальная схема управителя.
Задание на моделирование для программы PSpice заносится в в текстовые файлы. При графическом вводе схем с помощью программы Capture CIS создается три файла с одинаковым именем и расширениями .opj, .dsn и .dbk. При составлении этого задания непосредственно с помощью текстового редактора достаточен один файл с расширением .opj. Имена узлов могут быть целыми числами или алфавитно-цифровыми символами не более 131 символа. В качестве этих символов используются буквы латинского алфавита от A до Z, цифры 0-9, и знаки “$”, “_”, “*”, “/”, “%”.
Предложением входного языка PSpice делается на описания компонентов и директив.
Описание компоненты считается любая строка, не начинающаяся с символа “.”. Описание компонента имеет следующую структуру /4/:
<имя компонента> <номера двух или более узлов> [<имя модели>] <числовые данные>
Имя компонента состоит из последовательности символов латинского алфавита и цифр, общая длина имени не должна превосходить 131 символ. Первый символ – одна из букв латинского алфавита от A до Z, далее в любом порядке – алфавитно-цифровые символы и знаки “$”, “_”, “*”, “/”, “%”. Первый символ имени компонента определяет его тип. При графическом вводе схем с помощью программы CAPTURE CIS пользователь может вводить первый символ имени компонента по своему усмотрению, а при составлении текстового описания схемы для передачи его в PSpice к именам всех компонентов будут добавлены префиксы – это выполняется в соответствии с шаблонами символов компонентов TEMPALE. Поэтому на схемах можно именовать элементы, не придерживаясь приведенных правил. Например, транзисторы всех типов можно согласно ЕСКД именовать как V1, V2, V3 …, а при составлении текстового описания схемы биполярный транзистор получит имя Q_V1, полевой – J_V2, МОП-транзистор – M_V и так далее.
Анализ спектральной плотности внутреннего шума производится по директиве:
.NOISE М(<узел>[,<узел>]) <имя> <n>
Директива .NOISE указывается совместно с директивой .АС, в которой задается диапазон частот анализа. Источниками шума служат резисторы, ключи и полупроводниковые приборы. На каждой частоте а рассчитывается спектральная плотность выходного напряжения Suвых(f), В2/Гц, обусловленная наличием статистически независимых источников внутреннего шума. Точки съема выходного напряжения указываются по спецификации V(<узел> [,<узел>]). К входным зажимам цепи подключается независимый источник напряжения или тока, <имя> которого приводится в списке параметров директивы .NOISE. Этот источник не является источником реального сигнала, он служит лишь для обозначения входных зажимов цепи, к которым перечитывается выходной шум. Уровень шума пересчитывается с выхода на вход делением спектральной плотности выходного напряжения Suвых на квадрат модуля соответствующей передаточной функции.
Результат моделирования уровня шума представлен на рисунке 2. На рисунке ось ординат приведена в децибелах относительно напряжения 1 мкВ. Из приведённого графика видно, что среднее значение уровня шума составило -20.8 дБ/мкВ
Рисунок 2 – Уровень собственных шумов.
Разработка печатной платы осуществлена на базе пакета P-CAD 2001. Это обусловлено двумя причинами:
1. Редактор печатных плат и средства вывода на периферийные устройства наиболее удобно организованы в пакете P-CAD.
2. Информация о принципиальных схемах, созданных в редакторе Capture CIS, в виде списка соединений передается в P-CAD.
Поэтому для автоматизированной разводки печатной платы достаточно создать список соединений с помощью стандартной функции Capture CIS, а затем передать его в среду разработки P-CAD.
Исходными данными для разводки печатной платы являются схема электрическая принципиальная и максимальные габаритные размеры, а также требования ГОСТ . Поэтому необходимо определиться с вариантом расположения радиоэлементов (одно- или двухстороннее), а также количеством слоёв, на которых будут располагаться печатные проводники (соответственно одно-, двух- или многослойные печатные платы).
При разработке печатной платы для рассматриваемого устройства было выбрано двухстороннее расположение радиоэлементов и печатных проводников, что обусловлено применением безкорпусных элементов. Такой подход позволяет при одинаковом количестве элементов схемы существенно улучшить массо-габаритные показатели по сравнению с применением элементов с гибкими выводами.
Чертежи верхнего и нижнего слоёв печатной платы приведены соответственно на рисунках 3 и 4.
Рисунок 3.
На рисунке видно, что часть слоя, на котором располагается выводные элементы, не «залита» землёй. Такой подход обусловлен тем, что фольга, из которой выполняются проводники, играет роль распределённой ёмкости по отношению к элементам.
Рисунок 4.
На заключающем этапе разработки устройства составляется пакет конструкторских документов, виды и комплектность которых устанавливает ГОСТ 2.102-68. Порядок разработки, оформления и обращения конструкторской документации установлен комплексом государственных стандартов Единой системы конструкторской документации (ЕСКД, группа Т52, указатель государственных стандартов СССР ГОСТ 2001-70, ГОСТ 2.804-84).
В рамках данной работы необходимо предоставить полную принципиальную электрическую схему устройства, а также перечень элементов, содержащихся в ней. Данные документы представлены соответственно в приложении.
В ходе проделанной работы было проведено компьютерное моделирование реального устройства, применяемого на одном из предприятий города Воронежа, а также разработан пакет конструкторских документов.
Значительный интерес в проделанной работе представляют результаты компьютерного моделирования, показавшие уровень внутренних шумов схемы управления
Список используемой литературы
1. Платы печатные. Основные параметры конструкции. ГОСТ 23751-86.
2. Платы печатные. Общие технические условия. ГОСТ 23752-79 (СТ СЭВ 2742-80, СТ СЭВ 27443-80).
3. Хайнеман Р. PSPICE. Моделирование работы электронных схем: Пер. с нем. – М.: ДМК Пресс, 2002. – 336 с.
4. Разевиг В. Д. OrCad 2002: М.: Солон-Р, 2001. – 528 с.