Смекни!
smekni.com

Введение Термин «онтология» (стр. 5 из 73)

Можно попытаться понять аргументацию Зенона, исходя из притчи о развилке дорог. В начале древнегреческой логики обнаруживает себя проблема ориентации в буквальном смысле слова. Стоя на развилке дорог, человек имеет два пути, на лишь один есть у него в «действительности»; второй путь он имеет и не имеет, а это значит, что у него нет достоверности, что второй путь является вообще путем (а не только обманом или иллюзией пути). Ведь чтобы проверить, что там есть путь, надо хотя бы немного пройти по нему. Оказывается, что развилка дорог на самом деле есть проблема времени, так как «немного» могло бы означать всю жизнь. Первый путь, путь истины, Парменид характеризует так: «что есть и что не есть», а второй путь, о котором он говорит, что нельзя по нему идти, следующим образом: «что не есть и что достоверно, что не есть».9 Стоит остановиться на структуре этих положений. Была многократно отмечено, что логика и метафизика в европейской культуре имеют глубокие корни в особенности индогерманских языков. Это относится прежде всего к грамматической структуре субъект-предикат, но не только к ней. Имеются, как я думаю, с точки зрения логики и метафизики три загадочных слава в этих языках «и»,10 «есть», «нет». Если учитывать многозначность слова «есть» как связку и как выражение «существует», то можно сказать, что эти три слова лежат в основе всей классической логики высказываний и предикатов. Различные комбинации этих трех слов и создают парменидовскую развилку.

Первый путь имеет следующую структуру: А и не не А (есть и не есть, что не есть). В классической логике имеет место следующее тождество: А= (А и А) = (А и не не А), а также: А= не не А = (А и не не А). В обоих случаях тождество А= (А и не не А) имеет основание в некоторой итерации: в первом случае итерируется вначале «есть», а затем «не есть», во втором случае наоборот. В вышестоящем тождестве можно по-

s Simplikios in Phys. S. 145, 1—146, 25. S. 38, 30—39, 9 (DK 28 В S); ders. in Gael, S. 558, 9 f. (DK 28 В 19).

„όπως εότιν τε χαι ως ούχ έότι μη είναι* bzW. ως ούχ έότιν τε у-α ι ως: •χρεών έότι μη είναι" vgl. Pnoklos in Tim. I, S. 345, 18f.; Simplikios in Phys, S. 116, 28f. (OK 28 В 2).

10 Вместо «и» может быть «или».

средством редукции из (А и не не А) перейти к А. Можно сказать, что это обратный способ итерации. «Нет» выполняет в логике функцию противопоставления, а «и» — функцию повторения. Первый путь поэтому можно охарактеризовать как переплетение «есть», «нет», «и» таким способом, что оно должно быть логически значимым, истинным и вообще существовать. Дело идет о пути, на котором переплетение логических операторов со связкой «есть», т. е. с бытием, совпадает и, соответственно, на котором можно развертывать бытие через логические операторы, сохраняя бытие как бытие. Этим охвачены как «нет», так и «и» связкой «есть», т. е. противопоставление и повторение имеют начало, середину и конец в бытии. Следовательно, первый путь начинается с того, чем заканчивается, и заканчивается тем, с чего начинается. И опосредование между началом и концам через отрицание и итерацию является только видимостью движения на поверхности бытия. Поэтому логика бытия и мышления на первом пути тавтологичны. Однако если отрицание, повторение и бытие определяют, так сказать, между собой способ поведения друг относительно друга, то постоянно грозит опасность со стороны отрицания либо итерации разрушить; оболочку, посредством которой бытие охватывает тотальность. Эта опасность и есть опасность, которую представляет второй путь.11

Развилку дорог можно описать и иначе. Она есть развилка между двумя способами итерирования: на первом пути результат итерирования будет итерирован в целом и поэтому воспроизводится одно и то же содержание (А, не не А, не не не не А, ..., А, А и А, А и А и А и А, ...); на втором .пути происходит итерация, поскольку итерируется исходный пункт, из чего можно получить либо все время одно и то же (А, А и А, А и А и А, . . .), либо осцилляцию (А, не А, не не А, не не не А, . . .; Аи не А, не (А и не А), . . .). Видно, что второй путь итерирования содержит первый относительно результата.12 Второй путь может вести мышление либо к противоречию, либо к осцилляции. Именно поэтому он запрещен. Первый путь

11 Возможно найти третий путь. Кроме первого, на котором мышление определяется бытием, и второго, на котором мышление определяется негативностью, для третьего пути характерно то, что на нем мышление определяется повторением. Если с точки зрения бытия второй и третий пути совпадают на пути небытия, то с другой перспективы можно различать мышление бытия и мышление негативности как мышление в логическом пространстве, с одной стороны, и мышление повторения как мышления во времени, с другой. При этом все равно можно было бы различать мышление бытия (формальную логику или логику бытия) и мышление негативности (диалектическую логику или логику рефлексии).

12 В тексте парменидовскои поэмы второй путь имеет следующую структуру: «не есть». Это итерируется, если это итерируется, то получается: «не есть и не есть», «не есть и не есть и не есть» и т. д. как и: «не есть, что не есть», «не есть, что не есть, что не есть» и т. д. Видно, что различные способы итерирования; через структуру текста точно установлены.

есть путь тождества, путь вечно самого себе тождественного, не изменяемого в движении (в итерации). Это есть путь принципа тождества. Второй путь противоречия и осцилляции исключен принципом противоречия и исключенного третьего.

Зенон приводит мышление к осцилляции, используя принцип делимости до бесконечности в качестве иллюстрации. Ведь бесконечное деление является образом самой бесконечности и возможности безграничного продвижения. Мы можем видеть, что разделенное всегда можно делить дальше, (а то, что невозможно делить дальше, того мы не можем видеть, так как до тех пор, пока мы видим, можно делить еще). Возможность деления дальше является, кажется, очевидной. И понятно, что бегун добежит до финиша, Ахиллес догонит черепаху — это мы можем увидеть. Зенон нашел возможность так соотнести друг с другом эти две очевидности, что отношение (сопряжение) их. вместе стало неприемлемо для его современников. Это удалось ему постольку, поскольку он заставил мышление колебаться между этими двумя, якобы подтвержденными наблюдением очевидностями. Мышление, сбитое с толку, ищет спокойствия. Искушение движения по первому пути возрастает.

То, что сделал Зенон, выглядит так. Он предлагает движение по второму пути — запрещенному, чтобы найти аргументы и пользу первого. На втором пути он приводит мышление в ситуацию непрерывного колебания, интерпретируя затем это осциллирование мышления как противоречие самого мышления, в которое оно попадает на втором пути. Следовательно, если мышление не хочет впасть в осциллирование, то из двух отмеченных Парменидом дорог оно должно выбрать первую. Но надо учитывать следующее. Во-первых, у Зенона мышление находится на втором пути, т. е. противоречие и третье включены, с тем, чтобы в этой ситуации обосновывать их исключение. Разрыв, образовавшийся между тем, что он делает и для чего он это делает, можно зафиксировать так: мышление должно себя мыслить иначе (по-другому), чем оно мыслит.13 Во-вторых, следует заметить, что Зенон интерпретировал осциллирующее мышление как противоречивое. Эта интерпретация предполагает, что мышление во времени трансформировано в мышление в пространстве.14 Лишь в логическом пространстве парадоксы и антиномии приобретают вид про-

13 Может быть, вообще нельзя идти по первому пути, так как каждая попытка начать движение кончается тут же, ибо есть самотождество. Поэтому первый путь есть не путь, а его иллюзия. И кажется, что до сих пор* еще никто не прошел по этому пути, хотя многим мнилось, что они только* по нему и идут. Возможно, существует только второй путь, и 'поэтому Зенону не оставалось ничего другого, как идти по нему. Мышление с тех: пор существует в парадоксальной ситуации, а именно: оно должно принимать тот путь, по которому оно идет (т. е. второй путь), за первый.

14 Зенон исключил вместе с парадоксом движения время из логического пространства. Это можно увидеть на примере апории «Стадий».

тиворечия. На такой трансформации пространства покоится процедура reductio ad absurdutn, непрямое доказательство и, наконец, само логическое отрицание. В то время как осциллирующее мышление не может быть изображено в логическом пространстве, противоречие может: не А, есть ~А и наоборот. В логическом пространстве А доказано, если можно привести его противоположность к логическому противоречию. Быть может, тайна противоречия и отрицания лежит в пространственном преображении изначально временного мышления.

Зенон имел намерение защитить Парменида от тех, кто издевался над его учением. Но что смешного было в учении Парменида? Он учил, что единое бытие неделимо, а также: сущее -затрагивается сущим; единое сущее везде, но также: единое бытие заключено в своих границах — оно имеет образ шара. Возможно, уже тогда ставился вопрос как соединяются эти определения. Этот вопрос мог возникнуть на фоне дискуссии, которая была спровоцирована пифагорейским учением о едином (монас) и неограниченном (апейрон). Были и те, кто понимал тезис Парменида о едином бытии в смысле пифагорейской единицы. Но такая единица, такая мера выполняет свою задачу только тогда, когда имеется нечто, что можно упорядочить с помощью такой единицы, что можно измерить такой мерой. Но как это возможно, если единое бытие везде и охватывает все? На этом фоне аргументы Зенона можно истолковать таким образом: они были призваны показать невозможность понимания единого бытия в качестве единицы и меры; оно не может быть понято на основе математических определений. Тогда так называемые парадоксы множества у Зенона можно интерпретировать как доказательство не только против существования множества и единицы, но и как доказательство о том, что единое необходимо понимать как себе тождественное в логическом пространстве. Аргументацию Зенона можно истолковать таким образом: если в логическом пространстве сущее было бы множеством, то оно было бы одновременно конечным и бесконечным, тем самым несоизмеримым с самим; собой. А если бы оно было бы единицей, то оно было €>ы либо ничем, либо бесконечным и, следовательно, никоим -образом не единицей. То, что подлежит логическому мышлению, не есть единица множества и не есть множество единиц, но себе равное, тождественное. Со времен Парменида и Зенона это стало само собой разумеющейся в логике истиной.15