Смекни!
smekni.com

1. Виды растворов. Причины образования водных растворов. 4 (стр. 3 из 4)

В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатическом взаимодействии между ионами в непрерывной среде — растворителе.

Кристаллогидраты

Кристаллогидраты, кристаллы, включающие молекулы воды. Многие соли, а также кислоты и основания выпадают из водных растворов в виде К. Типичными кристаллогадратами являются многие природные минералы, например гипс CaSO4·2H2O, карналлит MgCl2·KCl·6H2O. Кристаллизационная вода обычно может быть удалена нагреванием, при этом разложение кристаллогидратов часто идёт ступенчато; так, медный купорос CuSO4·5H2O (синий) выше 105 °С переходит в CuSO4·5H2O (голубой) и CuSO4·H2O (белый); полное обезвоживание происходит выше 250°С. Однако некоторые соединения (например, BeC2O4·H2O) устойчивы только в форме кристаллогидраты и не могут быть обезвожены без разложения.

Водородный показатель

По кислотно-основным свойствам растворы обычно подразделяют на кислые, нейтральные и щелочные. Это лишь качественные характеристики кислотности среды. Для количественной характеристики можно использовать молярную концентрацию ионов водорода. Удобно кислотность (основность) водных растворов выражать через десятичный логарифм молярной концентрации ионов Н+, взятый с обратным знаком. Эта величина называется водородный показатель. Её обозначают символом рН: рН = - lg с+)

Если раствор нейтральный т.е. с+) = с-), то рН =7.

В кислотном растворе с+) > с-), то рН <7 и щелочном

с+) < с-), то рН >7.

Значение рН можно экспериментально определить при помощи кислотно-основных индикаторов – веществ, которые изменяют окраску с бесцветной (кисла форма индикатора) на красную (щелочная форма) при переходе от кислой среды к щелочной в интервале рНот 8,2 до 10,0.

Подбирая индикаторы с различными интервалами перехода окраски, можно установить рН. Наиболее точно рН раствора можно определить при помощи специальных приборов – рН-метров.

Определение кислотности среды – практически важная аналитическая задача. Многие растворы, используемые в промышленности и сельском хозяйстве, природные объекты должны иметь строго определенное значение рН.

На одном из этапов производства вольфрама получают – вольфрамат аммония. Эта соль выпадает в осадок при рН = 7,3 - 7,4.

Водородный показатель желудочного сока равен 1,7. Увеличение или уменьшение этого значения приводит к нарушению пищеварительных функций человека.

В сельском хозяйстве ведется контроль кислотности почвы. Например, для садоводства наилучшей является почва с рН = 5-6. При откланении рН от этих значений в почву вносят подкисляющие или подщелачивающие добавки.

Гидролиз солей. Типы гидролиза.

Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц.

Гидролиз, дословно, - это разложение водой. Давая такое определение реакции гидролиза солей, мы подчеркиваем, что соли в растворе находятся в виде ионов, и что движущей силой реакции является образование малодиссоциирующих частиц (общее правило для многих реакций в растворах).

Всегда ли ионы способны образовывать с водой малодиссоциирующие частицы? Разбирая этот вопрос, отмечаем, что катионы сильного основания и анионы сильной кислоты таких частиц образовать не могут, следовательно, в реакцию гидролиза не вступают.

Какие типы гидролиза возможны? Поскольку соль состоит из катиона и аниона, то возможно три типа гидролиза:

  • гидролиз по катиону (в реакцию с водой вступает только катион);
  • гидролиз по аниону (в реакцию с водой вступает только анион);
  • совместный гидролиз (в реакцию с водой вступает и катион, и анион);

Гидролиз по катиону приводит к образованию гидроксокатионов и ионов водорода (среда раствора кислая).

Отмечаем, что только иногда, при n=1, вместо гидроксокатионов получаем молекулы слабого основания.
А может ли гидроксокатион вступить в реакцию со следующей молекулой воды? Сообщаем, что это будет вторая ступень гидролиза, и что каждая следующая ступень протекает в тысячи раз слабее, чем предыдущая, что даже первая ступень протекает обычно на доли процента. Поэтому, как правило, рассматривается только первая ступень гидролиза.

Гидролиз по аниону разбираем аналогично, записываем уравнение:

Ann– + H-OH  HAn(n-1)– + OH

Подводим учеников к выводу:

Гидролиз по аниону приводит к образованию гидроанионов и гидроксид-ионов (среда раствора щелочная).

Совместный гидролиз.

Из самого названия следует, что в этом случае в растворе протекают две выше рассмотренные реакции. Опровергаем (можно экспериментом) представление о том, что среда будет нейтральной. Одинаковое число ионов водорода и гидроксид-ионов только на бумаге. На самом деле здесь протекают две независимые обратимые реакции, и каких ионов в растворе окажется больше, зависит от степени протекания каждой реакции. А это, в свою очередь, зависит от того, что слабее, кислота или основание.

Если слабее основание, то в большей степени будет протекать гидролиз по катиону и среда раствора будет кислой. Если слабее основание – наоборот. Как исключение, возможен случай, когда среда будет почти нейтральной, но это только исключение.

Одновременно обращаем внимание на то, что связывание гидроксид-ионов и ионов водорода в воду приводит к уменьшению их концентрации в растворе. Предлагаем вспомнить принцип Ле Шателье и подумать, как это повлияет на равновесие. Подводим их к выводу, что при совместном гидролизе степень его протекания будет значительно выше, и, в отдельных случаях, это может привести к полному гидролизу.

Полный гидролиз.

Для полного протекания гидролиза нужно, чтобы соль была образована очень слабой кислотой и очень слабым основанием. Кроме того, желательно, чтобы один из продуктов гидролиза, уходил из сферы реакции в виде газа. (Малорастворимые вещества, остающиеся в контакте с раствором, вообще говоря, не уходят из сферы реакции, поскольку все равно, сколько то растворимы.) Поэтому полному гидролизу подвергаются обычно соли газообразных или неустойчивых кислот: сероводородной, угольной, отчасти сернистой. К ним примыкают вещества, которые в обычном понимании уже не являются солями: нитриды, фосфиды, карбиды, ацетилениды, бориды.

Если вернуться к обычным солям, то полностью гидролизующиеся соли (карбонаты, сульфиды алюминия, хрома(III), железа(III)) нельзя получить реакциями обмена в водных растворах. Вместо ожидаемых продуктов в результате реакции мы получим продукты гидролиза. Гидролиз осложняет протекание многих других реакций обмена. Так, при взаимодействии карбоната натрия с сульфатом меди в осадок обычно выпадает основной карбонат меди (CuOH)2CO3.

В таблице растворимости для полностью гидролизующихся солей стоит прочерк. Однако прочерк может стоять по другим причинам: вещество не изучено, разлагается в ходе окислительно-восстановительной реакции, и т.п. Некоторые прочерки в таблице растворимости вызывают удивление. Так. сульфид бария хорошо известен и растворим (как и сульфиды других щелочноземельных металлов). Гидролиз этих солей протекает только по аниону.

Типы солей.

Гидролиз соли - это реакция, обратная реакции нейт­рализации. Поэтому каждую соль можно представить себе как соединение, образованное основанием и кислотой. Кислоты и основания бывают сильными или слабыми элект­ролитами. В зависимости от силы исходной кислоты и исходного основания различают четыре типа солей:

• образованные сильным основанием и слабой кислотой;

• образованные слабым основанием и сильной кислотой;

• образованные слабым основанием и слабой кислотой;

• образованные сильным основанием и сильной кислотой.

Соли, образованные сильным основанием и слабой кислотой.

В водном растворе цианида калия соль полностью рас­падается на ионы калия К+ и цианид-ионы CN-. Ионы калия К+ и гидроксид-ионы ОН- могут находиться в растворе од­новременно в значительных количествах. Ионы водорода Н+ и цианид-ионы CN- взаимодействуют между собой с образовани­ем циановодородной кислоты. Этот процесс схематически может быть представлен следующим образом:

KCN -> К+ + CN-

Н2О + CN- = ОН- + НCN

В результате гидролиза такой соли в растворе находят­ся полностью продиссоциированная щелочь и слабо диссо­циированная кислота. Эта кислота частично диссоцииру­ет на ионы и возвращает в раствор часть ионов Н+ и CN-. Возникает обратная реакция и устанавливается динами­ческое химическое равновесие:

К+ + CN- + Н2О = К+ + ОН- + HCN.

Следовательно, реакция между цианидом калия и во­дой является обратимой и проходит не полностью. Такое явление называется обратимым гидролизом.

В результате того, что в растворе образуется сильный элект­ролит гидроксид калия, концентрация гидроксид-ионов ОН- будет значительно больше концентрации ионов водорода Н+. В растворе соли возникает щелочная среда, т.е. рН > 7. Действительно, эксперимент показывает, что 0,1 М раствор этой соли имеет рН 11,1. Гидролиз цианида калия в сокращенной ионной форме можно представить уравнением