Смекни!
smekni.com

4. устойчивость систем автоматического управления (стр. 2 из 8)

Из выражения (4.1.2) передаточной функции системы можно получить дифференциальное уравнение системы в целом, как в разомкнутом, так и в замкнутом состоянии.

Уравнения разомкнутых систем. Если выражение (4.1.2) является передаточной функцией разомкнутой системы, то выражение

u(р) К(р) = y(p) Н(р), (4.1.3)

будет представлять собой операторное уравнение разомкнутой системы (уравнение в изображениях переменных). Положив в (4.1.3) u(p)=0, получим операторное уравнение свободного движения в разомкнутой линейной динамической системе:

y(p) H(p) = 0. (4.1.4)

Переходя в (4.1.4) к оригиналам, т. е. от операторного уравнения к дифференциальному, и обозначив y(t) = х, получаем дифференциальное уравнение свободного движения в разомкнутой линейной динамической системе

a0dnx/dtn + a1 dn-1x/dtn-1 +…+ an-1 dx/dt +an = 0 (4.1.5)

Характеристическим уравнением, соответствующим дифференциальному уравнению (4.1.5), будет

Н(р) = 0, a0pn+a1pn-1+…+ an-1p+an = 0. (4.1.6)

Отсюда следует: приравненный нулю знаменатель передаточной функции разомкнутой линейной динамической системы является характеристическим уравнением, соответствующим дифференциальному уравнению разомкнутой системы. В связи с этим многочлен Н(р)=0 называется характеристическим оператором системы.

Уравнение замкнутых систем. Пусть (4.1.2) является передаточной функцией разомкнутой системы. Для замкнутой системы в силу отрицательной главной обратной связи имеем u(t) = -y(t), и (4.1.3) принимает вид -К(р) y(р) = Н(р) y(р). Операторное уравнение свободного движения в замкнутой системе:

[К(р)+Н(р)]y(р) = 0, (4.1.7)

где К(р), Н(р) - соответственно числитель и знаменатель передаточной функции разомкнутой системы; y(р) — изображение координаты системы в точке ее замыкания.

На основании (4.1.7) можно записать характеристическое уравнение, соответствующее дифференциальному уравнению свободного движения в замкнутой системе

К(р) + Н(р) = 0. (4.1.8)

C учетом того, что Woc(p) = 1, передаточная функция замкнутой системы:

Wзс(p) = W(p)/[1 + W(p)], (4.1.9)

где W(p)=K(p)/H(p) - передаточная функция разомкнутой системы. Или:

Wзс(p) = K(p)/[K(p) + H(p)] = K(p)/Hзс(p). (4.1.9')

На этом основании характеристическое уравнение замкнутой системы можно записать в виде

Hзс(р) = K(p) + H(p) = 0. (4.1.10)

Таким образом, приравненная нулю сумма полинома числителя и полинома знаменателя передаточной функции разомкнутой системы или приравненный нулю полином знаменателя передаточной функции замкнутой системы являются характеристическим уравнением, соответствующим дифференциальному уравнению свободного движения в замкнутой системе.

Корни характеристических уравнений систем могут быть либо вещественными, либо попарно комплексно сопряженными. Решение однородного уравнения выражается через корни характеристического уравнения и коэффициенты перед экспонентами, которые могут быть вычислены через вычеты:

усв(t) =

Сn exp(pnt). (4.1.11)

Условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанного в отклонениях, должна стремиться к нулю, то есть затухать.

Рис. 4.1.3.

Из формулы (4.1.11) нетрудно вывести условие устойчивости линейных динамических систем: линейная система будет устойчива, если все вещественные корни и все вещественные части комплексных корней характеристического уравнения, соответствующего исходному дифференциальному уравнению свободного движения системы, будут отрицательными, что дает затухающие по экспоненте решения. Если имеются чисто мнимые корни, то в переходном процессе будут гармонические незатухающие компоненты.

Каждому отрицательному вещественному корню ai соответствует экспоненциально затухающая во времени составляющая усв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует усв(t)i = const (рис. 4.1.3).

Рис. 4.1.4.

Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой wi, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис. 4.1.4).

Рис . 4.1.5.

Исходя из расположения на комплексной плоскости, корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис. 4.1.5). Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю, а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Таким образом, исследование устойчивости системы сводится к определению знаков вещественных частей корней характеристического уравнения системы. Но решение уравнений четвертой и более высоких степеней может встречать затруднения. Поэтому применяются косвенные методы анализа устойчивости без определения корней характеристического уравнения, по определенным критериям устойчивости.

Проверку факта отрицательности вещественных частей корней можно выполнять тремя способами:

- вычислив корни непосредственно, с использованием готовых программ;

- связав расположение корней с коэффициентами характеристического уравнения для последующего аналитического исследования;

- судить об устойчивости по частотным характеристикам системы.

Первые два способа называют алгебраическими, последний - частотным. В инженерной практике необходимо иметь эффективные и удобные правила проверки устойчивости. Однако сам по себе критерий устойчивости не обязан быть необходимым и достаточным условием устойчивости системы.

Алгебраические критерии устойчивости.

Необходимое условие устойчивости. Если все корни характеристического уравнения левые (вещественные части всех корней отрицательны), то все коэффициенты уравнения имеют один знак, т.е. все значения an либо больше нуля, либо меньше нуля одновременно. Равенство коэффициентов нулю не допускается (граница устойчивости). Доказательство очень простое и заключается в разложении полинома на простейшие множители. Они могут быть вещественные или комплексно - сопряжённые. Объединим последние в пары и перемножим, при этом в скобках нет ни одного отрицательного числа, а, следовательно, знак всех членов характеристического уравнения будет определяться знаком коэффициента a0. В дальнейшем будем рассматривать только уравнения, где a0 > 0. В противном случае уравнение умножается на -1.

Рассмотренное условие при порядке системы больше 2 является необходимым, но не достаточным условием, и применяется для отсеивания заведомо неустойчивых систем. Необходимые и достаточные условия дают алгебраические критерии Рауса и Гурвица.

Критерий Рауса. Используется в виде алгоритма, по которому заполняется специальная таблица с использованием коэффициентов характеристического уравнения:

1) в первой строке записываются коэффициенты уравнения с четными индексами в порядке их возрастания;

2) во второй строке – аналогично коэффициенты с нечетными индексами;

3) остальные элементы таблицы определяется по формуле: ck,i = ck+1,i-2 - ri ck+1, i-1, где ri = c1,i-2/c1,i-1, i ≥3 - номер строки, k - номер столбца.

4) Число строк таблицы на единицу больше порядка характеристического уравнения.

ri

i\k

1

2

3

4

- 1 c11 = a0 c21 = a2 c31 = a4 ...
- 2 c12 = a1 c22 = a3 c32 = a5 ...
r3 = c11/c12 3 c13 = c21-r3 c22 c23 = c31-r3 c32 c33 = c41-r3 c42 ...
r4 = c12/c13 4 c14 = c22-r4 c23 c24 = c32-r4 c33 c34 = c42-r4 c43 ...
... ... ... ... ... ...

Чтобы система была устойчива, необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса c11, c12, c13,... были положительными. Если это не выполняется, то система неустойчива, а количество правых корней равно числу перемен знака в первом столбце.

Достоинство - критерий прост в использовании независимо от порядка характеристического уравнения. Он удобен для использования на ЭВМ. Его недостаток - малая наглядность, трудно судить о степени устойчивости системы, насколько далеко отстоит она от границы устойчивости.