Смекни!
smekni.com

4. устойчивость систем автоматического управления (стр. 4 из 8)

Рис. 4.2.5.

На рис. 4.2.5а приведены АФЧХ разомкнутых САУ, устойчивых в замкнутом состоянии, на рис. 4.2.5б - замкнутая САУ неустойчива.

На рис. 4.2.5в и 4.2.5г показаны АФЧХ разомкнутых астатических САУ, соответственно устойчивых и неустойчивых в замкнутом состоянии. Их особенность в том, что АФЧХ при w ® 0 уходит в бесконечность. В этом случае при использовании критерия Найквиста ее мысленно замыкают на вещественную ось по дуге окружности бесконечно большого радиуса.

Критерий Найквиста нагляден. Он позволяет не только выявить, устойчива ли система, но и, в случае, если она неустойчива, наметить меры по достижению устойчивости.

4.3. ЗАПАС УСТОЙЧИВОСТИ СИСТЕМ [7].

Понятие структурной устойчивости. Астатическая система может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.

Системы, неустойчивые по первой причине, называются структурно неустойчивыми. Это означает, что изменением параметров системы нельзя добиться ее устойчивости, нужно менять ее структуру.

Рис. 4.3.1.

Например, если система состоит из любого количества инерционных и колебательных звеньев, она имеет вид, показанный на рис. 4.3.1. При увеличении коэффициента усиления системы K каждая точка ее АФЧХ удаляется от начала координат, пока при некотором значении Ккрит АФЧХ не пересечет точку (-1, j0). При дальнейшем увеличении K, система будет неустойчива. И, наоборот, при уменьшении K такую систему, в принципе, можно сделать устойчивой, поэтому ее называют структурно устойчивой.

Если система астатическая, то n - порядок астатизма, равен количеству последовательно включенных интеграторов. При ее размыкании характеристическое уравнение системы имеет нулевые корни, поэтому при w®∞ АФЧХ стремится к ∞ (рис. 4.2.5в и 4.2.5г). Например, пусть Wр(p) = K/(p(Tp+1)), тогда АФЧХ разомкнутой системы:

W(jw) =

= P(w) + jQ(w).

Рис. 4.3.2.

Так как порядок знаменателя больше порядка числителя, то при w®0 имеем P(w)®∞, Q(w)® -j∞. Подобная АФЧХ представлена на рис. 4.3.2. Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0). В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при w®0, ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, система, имеющая одно интегрирующее звено, является структурно устойчивой.

Рис. 4.3.3.

Если система имеет два интегрирующих звена (порядок астатизма 2), ее АФЧХ уходит в бесконечность во втором квадранте (рис. 4.3.3). Например, пусть Wр(p) = K/(p2 (Tp+1)), тогда АФЧХ системы:

W(jw) =

= P(w) + jQ(w).

При w®0 имеем P(w)® -∞, Q(w)® j∞. Такая система не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива.

Структурно неустойчивую систему можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие) или изменив структуру системы, например, с помощью местных обратных связей.

Понятие запаса устойчивости. В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать систему так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости.

Рис. 4.3.4.

Согласно критерию Найквиста, чем дальше АФЧХ от критической точки (-1, j0), тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе.

Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой системы от критической точки в направлении вещественной оси и определяется расстоянием h от критической точки до точки пересечения годографом оси абсцисс (рис. 4.3.4).

Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом j между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.

Рис. 4.3.5.

Как уже отмечалось, с ростом коэффициента передачи разомкнутой системы растет модуль каждой точки АФЧХ и при некотором значении K = Kкр АФЧХ пройдет через критическую точку (рис. 4.3.5а) и попадет на границу устойчивости, а при K > Kкр замкнутая система станет неустойчива. Однако в случае АФЧХ типа 1 (рис. 4.2.4) (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых систем (рис. 4.3.5в). В этом случае запас устойчивости определяется двумя отрезками h1 и h2, заключенными между критической точкой и АФЧХ.

Рис. 4.3.6.

Обычно при создании системы задаются требуемыми запасами устойчивости h и j, за пределы которых она выходить не должна. Эти пределы выставляются в виде сектора, вычерчиваемого вокруг критической точки, в который АФЧХ разомкнутой системы входить не должна (рис. 4.3.6).

Рис. 4.3.7.

Анализ устойчивости по ЛЧХ. Оценку устойчивости по критерию Найквиста удобнее производить по ЛЧХ разомкнутой системы. Очевидно, что каждой точке АФЧХ будут соответствовать определенные точки ЛАЧХ и ЛФЧХ.

Пусть известны частотные характеристики двух разомкнутых систем (1 и 2), отличающихся друг от друга только коэффициентом передачи K1 < K2. Пусть первая система устойчива в замкнутом состоянии, вторая нет (рис. 4.3.7).

Если W1(p) - передаточная функция первой системы, то передаточная функция второй системы W2(p) = K

W1(p), где K = K2/K1. Вторую систему можно представить последовательной цепочкой из двух звеньев с передаточными функциями K (Безинерционное звено) и W1(p), поэтому результирующие ЛЧХ строятся как сумма ЛЧХ каждого из звеньев. Поэтому ЛАЧХ второй системы: L2(w) = 20 lg K + L1(w), а ЛФЧХ: j2(w) = j1(w).

Пересечениям АФЧХ вещественной оси соответствует значение фазы j = -p. Это соответствует точке пересечения ЛФЧХ j = -p линии координатной сетки. При этом, как видно на АФЧХ, амплитуды A1(w) < 1, A2(w) > 1, что соответствует на ЛАЧХ значениям L1(w) = 20 lg A1(w) < 0 и L2(w) > 0.

Сравнивая АФЧХ и ЛФЧХ можно заключить, что система в замкнутом состоянии будет устойчива, если значению ЛФЧХ j = -p будут соответствовать отрицательные значения ЛАЧХ и наоборот. Запасам устойчивости по модулю h1 и h2, определенным по АФЧХ соответствуют расстояния от оси абсцисс до ЛАЧХ в точках, где j = -p, но в логарифмическом масштабе.

Особыми точками являются точки пересечения АФЧХ с единичной окружностью. Частоты wc1 и wc2, при которых это происходит, называют частотами среза.

В точках пересечения A(w) = 1 = > L(w) = 0 - ЛАЧХ пересекает горизонтальную ось. Если при частоте среза фаза АФЧХ jc1 > -p (рис. 4.3.7а кривая 1), то замкнутая система устойчива. На рис. 4.3.7б это выглядит так, что пересечению ЛАЧХ горизонтальной оси соответствует точка ЛФЧХ, расположенная выше линии j = -p. И, наоборот, для неустойчивой замкнутой системы (рис. 4.3.7а кривая 2) jc2 < -p, поэтому при w = wc2 ЛФЧХ проходит ниже линии j = -p. Угол j1 = jc1-(-p) является запасом устойчивости по фазе. Этот угол соответствует расстоянию от линии j = -p до ЛФЧХ.

Исходя из сказанного, критерий устойчивости Найквиста по логарифмическим ЧХ, в случаях, когда АФЧХ только один раз пересекает отрезок вещественной оси [-∞; -1], можно сформулировать так: для того, чтобы замкнутая система была устойчива необходимо и достаточно, чтобы частота, при которой ЛФЧХ пересекает линию j = -p, была больше частоты среза.

Если АФЧХ разомкнутой системы имеет сложный вид, то ЛФЧХ может несколько раз пересекать линию j = -p. В этом случае применение критерия Найквиста несколько усложняется. Однако во многих случаях данной формулировки критерия Найквиста оказывается достаточно.

4.4. ТОЧНОСТЬ СИСТЕМ [8].