· tу - время установления, промежуток времени, за который управляемая величина в первый раз достигает своего установившегося значения, характеризует скорость процесса управления.
· eуст - установившаяся ошибка (статическая точность, eуст = e(∞) =1- ууст.). Если eуст=0, то система астатическая.
· σ% - относительное перерегулирование (σ = (ymax-yзад)/yзад). Обычно требуют, чтобы значение σ было менее 18%. Перерегулирование характеризует колебательные свойства процессов. При нулевом значении s процесс носит монотонный характер (график 2 на рис. 4.5.2), а при достаточно больших s приближается к незатухающему колебательному движению.
· n - число колебаний за время переходного процесса (≤3шт.).
Как известно (и следует из выражения (4.1.11), чем дальше полюсы характеристического уравнения системы находятся от границы устойчивости (слева от мнимой оси комплексной плоскости), тем выше скорость протекания переходных процессов в системе. Для количественной оценки быстродействия систем используется также понятие степени устойчивости, которой называется положительное число, соответствующее расстоянию от мнимой оси до ближайшего к ней корня pi:
a = - min Re pi. i = [1, n].
В общем случае, этому условию соответствует пара комплексно сопряженных корней
p1,2 = -a ± jb,
c соответствующей наиболее медленной колебательной составляющей:
yi(t) = A exp(-at) sin(bt+j).
Отсюда, по затуханию колебательного процесса exp(-at) нетрудно определить время переходного процесса по заданной величине d:
tпп ≈ (1/a) ln(1/d).
Знак приближенности в данном случае отражает тот факт, что другие составляющие общего решения (4.1.11) также могут внести определенную долю в значение tпп, особенно, если вещественные части их полюсов близки по значениям к минимальному значению a.
По переходной характеристике и значению установившейся ошибки (ошибки при t>>tпп) можно оценить точность системы в режиме стабилизации - при постоянном входном или заданном воздействии у*(t)=const.
Эти показатели связаны с запасами устойчивости по амплитуде и по фазе. Поэтому, обеспечение стандартных показателей качества обеспечивает необходимую устойчивость. Задачу обеспечения показателей можно рассмотреть как оптимизационную. Как правило, эта задача оказывается многокритериальной и достаточно трудной для решения, в том числе, численного.
При синтезе САУ в системе обычно выделяются неизменяемая часть и изменяемая часть, в которую можно вносить коррективы. Неизменяемая часть системы задает возможность получения гарантированного качества. Классическим методом повышения качества системы является метод диаграмм В.В.Солодовникова. Практическая задача оптимизации обычно выполняется с использованием корректирующих устройств.
Последовательное корректирующее устройство. Передаточная функция разомкнутой скорректированной системы равна исходной, умноженной на передаточную функцию корректора. Корректирующее устройство включается последовательно в контуре системы в любом месте. Для исследования подходят ЛАЧХ, так как они складываются при последовательном соединении. ЛАЧХ и ЛФЧХ корректора находятся в виде разности желаемых и имеющихся частотных характеристик системы.
Типичным последовательным корректирующим устройством является ПИД- регулятор. Эти пропорционально-интегрально-дифференциальные регуляторы выпускаются в широком ассортименте и в разнообразных реализациях, включая программную на контроллерах.
Рис. 4.5.3. |
ПИД-регулятор (рис. 4.5.3) имеет три параллельных канала: усилитель с коэффициентом kп, интегратор с коэффициентом kи, дифференциатор с коэффициентом kд. Усилитель позволяет изменить коэффициент усиления системы и уменьшить установившуюся ошибку: eуст =1/(1+kп k). Интегратор повышает порядок астатизма на 1. Увеличение kд повышает запас устойчивости и сглаживает переходный процесс, поэтому дифференциальную составляющую называют демпфированием. С помощью интегральной и пропорциональной составляющих можно обеспечить первый порядок астатизма и желаемую статическую точность в ущерб запасу устойчивости, а дифференциальная составляющая повышает запас устойчивости.
Рис. 4.5.4. |
Параллельное корректирующее устройство имеет вид местной отрицательной ОС (рис. 4.5.4). Для синтеза параллельных корректирующих устройств использовать логарифмические частотные характеристики менее удобно, чем для последовательных. Существует ряд инженерных методов расчёта параллельных корректоров (например, метод диаграмм Никольса). Можно просто вычислять корректирующую Wкор(p) по желаемой Wзс(p).
Wкор(p) = (W(p)- Wзс(p))/(W(p)Wзс(p)).
Одна из двух передаточных функций Wкор(p) или Wзс(p) обычно не является физически реализуемой. Тем не менее, всегда можно выбрать достаточно близкую реализуемую функцию.
Метод Солодовникова позволяет построить корректирующее звено для имеющейся системы так, чтобы обеспечит требуемые типовые показатели качества и запас устойчивости по амплитуде и фазе. Метод основан на имеющейся связи между частотной характеристикой и переходной функцией:
H(t) = (2/p)
(P(w)/w) sin(wt) dw,где P(w) – вещественная часть АФЧХ W(jw)=P(w)+jQ(w).
В.В. Солодовников доказал, что в любой системе имеются следующие зависимости между основными показателями качества переходного процесса и Р(ω).
- σ% > 18%, если есть "горб", т.е. Рмах > Р0;
- σ% < 18%, если нет горба;
- σ% = 0, если производная dP/dω<0 и монотонно убывает. Требование монотонного убывания часто налагает неоправданные ограничения на конструкцию, достаточно обеспечивать σ% < 18%.
Диаграммы Солодовникова устанавливают связь между σ%, tпп, Рмах и ωс - частотой среза системы, то есть той частотой, где усиление системы равно 1 или L(ωс) = 0.
Рис. 4.5.5. |
Область существенных частот (ωн, ωв) - это та часть частотной характеристики, которая в основном определяет качество системы. Диапазон ЛАЧХ для области существенных частот от +26дб. до -16дб. Уровень +26дб. соответствует усилению K=20 и соответствующей установившейся ошибке eуст=1/(1+К) ≈ 0.05, т.е. нижняя частота области существенных частот определяется статической точностью eуст ≈ 0.05 при ступенчатом входном воздействии. Левее частоты ωн ЛАЧХ не ниже +26дб, если не требуется астатизма, либо имеет наклон в зависимости от порядка астатизма. Уровень -16дб. соответствует малости влияния высокочастотных составляющих переходного процесса на уровне ≈ 10%. Наклон ЛАЧХ в области существенных частот должен быть -20дб./дек. На диаграмме Солодовникова по горизонтали отложена второстепенная величина Рмах/Р0, которая в настоящее время используется редко, а по вертикальным осям отложены σ%, tпп и ωс.
Использовать диаграммы Солодовникова (рис. 4.5.5) можно по-разному. Обычно применяется такая методика. Уточняют, какие показатели качества могут быть сформулированы заказчиком, и остальные параметры, необходимые для построения корректирующего устройства, определяют по диаграммам Солодовникова. По графикам можно, например, определить при заданном перерегулировании и времени переходного процесса частоту среза системы: (σ%, tпп) → ωс, n, ∆A, ∆φ. Причём последние три параметра обеспечиваются автоматически. Тогда алгоритм синтеза САУ при исходно заданных σ%, tпп может быть, например, таким:
· По диаграммам определяем ωс (выражение ωс через tпп).
· Строим область существенных частот, что даёт нам основную часть желаемой ЛАЧХ. Достраиваем высокочастотную часть произвольно и низкочастотную часть, исходя из требуемого порядка астатизма.
· Синтезируем последовательное корректирующее звено, обеспечивающее такую ЛАЧХ. Использование методики Солодовникова гарантирует показатели качества замкнутой системы и запасы устойчивости по амплитуде на уровне ∆A%=200 (коэффициент усиления может быть увеличен в два раза), и по фазе на уровне ∆φ =35˚.
Программы анализа качества процессов управления. Современные инструментальные средства анализа и синтеза систем управления представлены множеством различных специализированных программных пакетов и комплексов, которые позволяют в диалоговом режиме выполнять операции над матрицами и полиномами, вычислять временные и частотные характеристики, строить корневые годографы, анализировать чувствительность и устойчивость, проверять управляемость и наблюдаемость системы, находить ее полюса и нули, сравнивать переходные процессы в системе по интегральным критериям и находить лучший, определять параметры и характеристики стохастических сигналов на входе и на выходе системы, составлять и преобразовывать математические модели исследуемой системы.