Эти программные средства обладают развитым сервисом, что позволяет строить и сравнивать графики нескольких процессов, изображать взаимные зависимости, фазовые кривые и портреты, строить характеристики и диаграммы, изображать и преобразовывать структурные модели системы, при этом графические построения могут быть выполнены в двух- и трехмерном представлении.
Известны фирменные и университетские программные пакеты анализа и синтеза систем управления: LSАР – США (Ливерморская национальная лаборатория) ТUТSIМ – США (Станфордский университет); СLADP – Великобритания (Кембридж); КЕDDС – Германия (Рурский университет); МАТRIХ - фирмы Integrated Systems Inc.; SIMULINK в среде МАТLАВ известной фирмы Маth Works Inc.; МАRS – Украина (Институт кибернетики). Среди отечественных инструментальных программных средств известны разработки Академии авиационного и космического приборостроения, Санкт-Петербург; Московского инженерно-физического института; Московского государственного технического университета; Института проблем управления РАН, Москва.
Программные комплексы ТUТSIМ, МАТRIХ, SIMULINK позволяют исследовать модели любых динамических систем, которые испытывают любые внешние воздействия. Комплексы обеспечивают команды изменения структуры модели, ее параметров, выходных блоков и диапазонов рассчитываемых данных; команды одиночного и многократного запуска, останова и продолжения процесса моделирования с выводом графиков и числовых данных на экран, принтер или в файл; команды графического сервиса, позволяющие изображать оси, сетку, маркировку, комментарии к графикам, строить фазовые кривые или взаимозависимости и прочее. Комплексы располагают различными функциональными блоками для моделирования любых непрерывных и дискретных, линейных и нелинейных динамических систем, испытывающих детерминированные и стохастические воздействия.
4.6. СЛУЧАЙНЫЕ ПРОЦЕССЫ В СИСТЕМАХ [8].
В реальных системах имеются помехи (возмущения), действующие в каналах передачи информации. Часто не имеется никакой, кроме статистической, информации об этих факторах, что заставляет считать эти параметры случайными величинами с заранее неизвестными законами распределения. Так возникает задача управления в условиях неопределенности. Здесь имеются два аспекта: управление в условиях неопределенности и задача борьбы с помехами.
Модели случайных сигналов. Случайные процессы и отображающие их сигналы будем считать функциями времени, принимающими случайные значения. В каждый момент времени, значение случайного процесса есть случайная величина x(t). Основной характеристикой случайной величины в момент времени t является функция p(x,t) - плотность вероятности в момент t. Плотность вероятности определяет функции математического ожидания и дисперсии случайных величин:
Mx(t) =
x(t) p(x,t) dx, Dx(t) = (x(t)-Mx(t))2 p(x,t) dx.Для описания статистической взаимосвязи значений x(t) в разные моменты времени вводятся корреляционная функция сигнала x(t):
Kx(t1,t2) = M[(x(t1)-Mx(t1)) (x(t2)-Mx(t2))],
и взаимная корреляционная функция сигналов x(t) и y(t):
Kxу(t1,t2) = M[(x(t1)-Mx(t1)) (y(t2)-My(t2))].
Отметим, что Kx(t,t) = Dx(t), т.е. при t1 = t2 = t это есть дисперсия в момент времени t.
Стационарным случайным процессом называется такой случайный процесс, для которого корреляционная функция зависит не от абсолютных значений t1 и t2, а только от их разности K(t1,t2) = K(t1-t2) = K(t). Дисперсия и математическое ожидание для стационарного случайного процесса являются константами. Стационарный случайный процесс для САУ не меняет своих статистических характеристик за время жизни системы.
Спектральная плотность S(ω) стационарного случайного процесса, есть преобразование Фурье от корреляционной функции K(τ). Соответственно, корреляционная функция K(τ) есть обратное преобразование Фурье спектральной плотности S(ω):
S(w) =
K(t) exp(-jwt) dt, K(t) = (1/2p) S(w) exp(jwt) dw.Спектральная плотность случайного процесса описывает разложение мощности процесса по гармоническим составляющим. Можно выразить дисперсию через интеграл от спектральной плотности. Это означает, что дисперсия есть суммарная мощность случайного процесса, распределённая по частоте:
D = K(0) = (1/2p)
S(w) dw.Фильтрация помех. Будем считать, что в САУ помехи могут быть в двух основных местах: помеха в канале управления (к управлению добавляется помеха W) и помеха в канале измерения (выходной сигнал измеряется с помехой V). Наиболее общая задача фильтрации шума - максимально возможное подавление обеих помех.
Если рассмотреть шумовой сигнал с бесконечным равномерным спектром, то ему будет соответствовать корреляционная функция в виде d-функции:
S(ω) = s2 = const; K(τ) = (s2/2π) δ(τ); D = K(0) =∞.
Эти три уравнения описывают “белый шум” с интенсивностью s2. Ясно, что такой сигнал не может быть физически реализован в силу бесконечной мощности. Можно, однако, реализовать сколь угодно близкий к этому случайный процесс, называемый "розовым шумом". Формально розовый шум получается при пропускании белого шума через любое реальное звено. При этом ограничивается спектр сигнала, так как никакое реальное звено не может пропускать бесконечную полосу частот. В результате, у реального розового шума может быть сколь угодно широкий, но убывающий спектр, а его корреляционная функция может очень быстро убывать, что означает малую связь значений процесса в разные моменты времени.
Задачу фильтрации помех будем решать как оптимальную, то есть искать условия наибольшего подавления помех. Помехи будем считать случайными процессами с известными корреляционными функциями (спектральными характеристиками). Алгоритмы управления и фильтрации могут быть реализованы по отдельности, и их одновременное функционирование в замкнутой системе не мешает друг другу. Другими словами, оптимальный фильтр можно рассчитывать отдельно от регулятора в том смысле, что характеристическое уравнение замкнутой системы оказывается равным произведению уравнений подсистемы регулирования и подсистемы фильтрации.
При анализе и синтезе фильтров используется аддитивная модель входного сигнала: u(t) = s(t)+q(t), где s(t) - полезная составляющая сигнала управления, q(t) - составляющая шумов и помех. Синтез оптимальных фильтров производится с максимальным использованием известной априорной информации как о сигналах, которые необходимо выделять, так и о шумах и помехах. Как правило, используется информация о природе полезного сигнала и шума, об их спектральном составе, о корреляционных и взаимных корреляционных характеристиках. Наличие определенных особенностей (различий) в характеристиках сигнала и шума позволяет реализовать фильтр вообще и оптимальный фильтр в частности. Если такие особенности отсутствуют, постановка задачи становится некорректной.
При наличии помех абсолютно точное выделение полезного сигнала методами линейной фильтрации, как правило, невозможно. Результат фильтрации
z(t) = h(t) ③ u(t-t) (4.6.1)
отличается от s(t) на величины e(t) = z(t)-s(t), которые являются абсолютными значениями погрешности воспроизведения полезного сигнала по координатам t. Качество фильтра оценивается средним значением квадрата величины e(t):
. (4.6.2)Выражение (4.6.2) дает возможность определить функцию h(t) фильтра по критерию минимума среднего квадратического отклонения выходного сигнала от его действительной или заданной формы.
Фильтр Винера является оптимальным фильтром формирования из входного сигнала u(t) выходного сигнала z(t) при известной форме полезного сигнала s(t), который содержится во входном сигнале в сумме с шумами. В качестве критерия его оптимизации используется среднее квадратическое отклонение сигнала z(t) на выходе фильтра от заданной формы сигнала s(t). Подставим уравнение свертки (4.6.1) в раскрытой форме интегральной свертки в выражение (4.6.2) и получим отклонение e2 выходного сигнала z(t) от заданной формы выходного сигнала s(t):
. (4.6.3)Минимум выражения (4.6.3) определяет функцию импульсного отклика h(t) оптимального фильтра. При этом для оптимального фильтра действительно выражение:
h(t) ③ Ku(t) = Kzu(t). (4.6.4)
Другими словами, свертка функции отклика оптимального фильтра с функцией автокорреляции входного сигнала должна быть равна функции взаимной корреляции выходного и входного сигналов.
Отметим, что Ku(t) = Ru(t)+Rq(t), где Ru - функция автокорреляции сигнала, Rq - функция автокорреляции шума, а Kzu(t) = Bzs(t)+Bzq(t), где Bzs - функция взаимной корреляции сигналов z(t) и s(t), Bzq - функция взаимной корреляции сигнала z(t) и помех q(t). Подставляя данные выражения в (4.6.4), получаем:
h(n) ③ [Ru(t)+Rq(t)] = Bzs(t)+Bzq(t). (4.6.5)
Частотная характеристика фильтра находится преобразованием Фурье левой и правой части уравнения (4.6.5):
H(w)[Wu(w)+Wq(w)] = Wzs(w)+Wzq(w),