Смекни!
smekni.com

Правила выбора баз общие сведения о приспособлениях. Виды приспособлений (стр. 12 из 15)

Внутренний диаметр пневмоцилиндров может составлять 50, 75, 100, 150, 200, 250 и 300 мм; цилиндры диаметром меньше 50 мм используют в редких случаях, например для выталкивания обработанных деталей из приспособления, поджима заготовок к установочной поверхности и т. п. Увеличение диаметра пневматических цилиндров свыше 300 мм приводит к усложнению конструкции привода и увеличению его габаритов, поэтому в случаях, когда требуется большая сила зажима, целесообразно применять пневмогидравлические приводы.

Пневматические цилиндры могут быть стационарными, вращающимися, качающимися и плавающими. Имеются также специальные конструкции цилиндров. Обычно цилиндры изготовляют как самостоятельные узлы, но иногда пневматический цилиндр выполняют в корпусе приспособления (встроенный цилиндр).

Каждый пневматический цилиндр состоит из корпуса, поршня и штока. В корпусе цилиндра устанавливают втулку, а с торцов цилиндра — одну или две крышки, которые центрируют буртиками по внутреннему диаметру втулки. Чтобы предотвратить просачивание воздуха, поршень и крышки снабжают уплотнениями.

Крышки с втулкой и корпусом могут быть соединены шпильками или болтами, пропущенными снаружи корпуса. При изготовлении корпуса цилиндра совместно с передней крышкой заднюю крышку привертывают винтами. Втулку и крышки изготовляют из чугуна, стали и алюминия. В крышках делают выточки глубиной 3 мм и диаметром 10 мм для предварительного накопления сжатого воздуха при ходе поршня до упора задней или передней крышки. Пневматические приводы применяют обычно с односторонним штоком, т. е. со штоком, проходящим через одну из крышек цилиндра.

Движение штока в пневматической камере происходит в результате деформации диафрагмы. Диафрагменная пневматическая камера (рис. 45) представляет собой корпус, выполненный из двух литых или штампованных чашек, между которыми установлена резиновая тарельчатая, а иногда плоская диафрагма. Шайба 4, установленная на штока 6, прижимается пружинами 2 и 3 к резиновой диафрагме 5. При впуске сжатого воздуха в корпус камеры диафрагма деформируется и, воздействуя на шайбу, передает давление штоку 6. Камера имеет только одно впускное отверстие для воздуха, который поступает по воздуховоду 1 через распределительный кран 7. При переключении распределительного крана 7 воздух из камеры выходит в атмосферу, пружины 2 и 3 возвращают шайбy со штоком, а значит, и диафрагму в исходное положение.

Тарельчатую диафрагму (рис. 46) изготовляют из четырехслойной прорезиненной ткани. Основные размеры диафрагм, выпускаемых промышленностью, приведены в табл. 1. Плоские диафрагмы применяют только при небольшом ходе штока. Диаметр шайбы камеры принимают равным 0.8D, дальнейшее увеличение диаметра шайбы влечет уменьшение хода штока.

Пневматические камеры имеют ход штока 30...35 мм. При таком ходе штока пневматические камеры в зависимости от размера, без применения дополнительных механизмов развивают следующие значения силы зажима:

диаметр Di, мм .......... 174 200 228,

сила F, кН .......... 2,5...3 3...4,5 6...6,5

Таблица 1 - Основные размеры резиновых диафрагм тарельчатой формы, мм

D1

D

s

Е

D2

d3

Количество отверстий

374

129

6

27

154

9

12

200

141

6

27

173

9

36

228

178

6

27

204

9

18

Рис. 46 – Схема тарельчатой диафрагмы

Пневматические камеры бывают стационарные и вращающиеся. Применение вращающихся камер уменьшает не только массу привода и консольную нагрузку на шпиндель, но и расход сжатого воздуха. На рис. 47 показан общий вид вращающегося патрона с диафрагменной камерой. К камере 2 присоединяют распределительную муфту 1, а в донышке камеры просверливают отверстие для поступления воздуха из муфты, при этом отверстие в штуцере 9 заглушают. Камеру 2 крепят к планшайбе 3, связанной ползунком 8 с тягой 7. На задний конец шпинделя станка посажена планшайба 6, которая посредством промежуточной планки 5 связана со штоком 4 пневматической камеры. При впуске воздуха в камеру заготовка зажимается в результате воздействия сжатого воздуха на заднюю стенку пневматической камеры, которая, перемещаясь назад, увлекает за собой тягу 7. При необходимости преобразования тянущей силы в толкающую применяют пневматическую камеру, жестко соединенную с задней планшайбой станка. Шток камеры непосредственно соединен с тягой.

Рис. 47 - Общий вид вращающегося патрона с диафрагменной камерой

Чтобы увеличить силу зажима, применяют комбинированные диафрагменные пневматические камеры. В этом случае устанавливают несколько камер, как показано на рис. 48. В трехсекционную вращающуюся пневматическую диафрагменную камеру входят три сваренные между собой штампованные камеры, состоящие из крышки 4, камеры 5, резиновой диафрагмы 1 с шайбой 2, уплотнения 7 и втулки 6, сидящей на валу 9. Кроме того, передняя камера сварена с диском 10, которым камера центрируется и крепится к планшайбе 8. На задний конец вала 9 надета распределительная муфта 3. Для зажима детали сжатый воздух поступает через канал А и отверстия В в правые части камер. Увеличение зажимной силы происходит благодаря большой общей площади диафрагм. В целях экономии сжатого воздуха для отжима детали достаточно впустить его не во все три камеры, а лишь в крайнюю левую камеру через отверстие Б.

Рис. 48 - Комбинированные диафрагменные пневматические камеры

При малых размерах пневматических цилиндров и камер и при необходимости получения больших сил зажима заготовок в пневматических приспособлениях используют механизмы усилители. В практике применяют рычажно-шарнирные, клиновые, эксцентриковые и винтовые усилители. Наиболее распространены рычажно-шарнирные усилители, схемы которых могут быть самыми различными в зависимости от условий их применения.

4.6.3 Пневмогидравлические и гидравлические приводы

При механизации и автоматизации производственных процессов в ряде случаев применяют большие зажимные усилия. Этим требованиям наиболее отвечают гидравлические приводы, так как они могут развивать давление до 8 МПа; их рабочая среда (масло) практически несжимаема, поэтому такие приводы могут применяться не только для управления силовыми механизмами, но и для точных перемещений рабочих органов станка и подвижных частей приспособлении. Масляная среда в системе обеспечивает надлежащую смазку силовых узлов и аппаратуры, а также исключает неполадки, возникающие в пневматических системах в результате конденсации водяных паров (ржавчина и засорение). Кроме того, конструктивное исполнение гидравлических приводов при высоком давлении в системе позволяет применять рабочие цилиндры небольшого диаметра (20...50 мм), что обеспечивает их компактность по сравнению с пневматическими приводами.

Пневмогидравлические приводы состоят из преобразователя, повышающего давление, аппаратуры и рабочих гидроцилиндров, зажимающих обрабатываемую заготовку. Принципиальная схема такого привода показана на рис. 49. Привод представляет собой камеру, заполненную маслом. Шток 2 пневматического цилиндра, являющийся плунжером гидравлической системы, входит в камеру и вытесняет масло, давление которого передается рабочему плунжеру 1 привода, действующему на зажимное устройство.

Рис. 49 – Принципиальная схема пневмогидравлического привода

Пневмогидравлические преобразователи давления работают от сети сжатого воздуха и по принципу работы подразделяются на преобразователи прямого и последовательного действия.

Преобразователь прямого действия состоит из блока с пневматическим и гидравлическим цилиндрами, а преобразователь последовательного действия состоит из двух блоков с пневматическим и гидравлическим цилиндрами, причем вначале срабатывает первый блок (низкого давления), обеспечивающий предварительное закрепление обрабатываемой заготовки, а затем второй блок (высокого давления), осуществляющий окончательный зажим заготовки. Применение преобразователей сокращает потребление сжатого воздуха по сравнению с обычными пневматическими приводами на 90...95.

На рис. 50, а показан общий вид пневмогидравлического привода для тисков с преобразователем прямого действия. При нажатии на распределительный кран 1 сжатый воздух поступает в полость цилиндра 2, который жестко связан шпильками 5 с неподвижной губкой 8 тисков. Шток 4 гидроцилиндра давит на торец скользящего нa шпильках 5 станка 3 и перемещает его справа налево. Стакан перемещает гайку 7 с винтом 10, а вместе с ним и подвижную губку 9 тисков. При переключении распределительного крана воздух уходит в атмосферу, а пружина, заключенная в стакан 6, отводит подвижную губку; две другие пружины возвращают в исходное положение поршни. Тиски устанавливают на размер обрабатываемой детали вращением винта 10.