Смекни!
smekni.com

Горячее цинкование (цинкование в расплаве цинка) (стр. 3 из 8)

Использование в растворах обезжиривания добавок тринатрийфосфата и поверхностно-активных веществ интен­сифицирует процесс щеточно-моечной обработки. По дан­ным в ваннах струйной обработки полосы моющими растворами с температурой 60—70 °С под давлением 294,2 КПа и устройствами со щетками типа «скотч-брайт», обеспечивается коэффициент очистки поверхности 96,5 % при продолжительности операции 30 с и первоначальной загрязненности полосы 1000 мг/м2.

1.3.2. Термическая подготовка.

Термическая подготовка поверхности полосы в агрегатах горячего цинкования, работающих по классическому спо­собу Сендзимира, имеет много недостатков, главными из которых являются чрезмерная окисленность стали, сниже­ние адгезионных свойств покрытия, ограничение скорости движения полосы, большой расход водорода, тепла. Более эффективен способ термической подготовки поверхности по­лосы в атмосфере продуктов неполного сгорания газового топлива, имеющих температуру 1000—1300 °С. В этих усло­виях одновременно с нагревом полосы осуществляется очи­стка ее поверхности от остатков прокатной смазки и дру­гих загрязнений путем их сжигания и возгонки (испаре­ния). Высокий градиент температур между полосой и газами предохраняет поверхность стали от взаимодействия с компонентами продуктов сгорания СО2 и Н2О, вызываю­щих окислительную реакцию. Содержание в продуктах го­рения компонентов СО и Н2 также является необходимым условием, чтобы поддерживать восстановительный харак­тер атмосферы.

Горение топливного газа (природный газ, смесь природ­ного с доменным, коксо-доменный и др.) протекает по урав­нениям химических реакций:

СН4+ 2 = 2Н2О + СО2,

C2H6 + 3,5О2 = ЗН2О + 2СО2.

Аналогичные реакции протекают при горении других уг­леводородов типа СлН2п+2 (С3Н8, С4Н10).

Газовая среда в камере печи в результате неполного сгорания топлива состоит в основном из продуктов реакции СО2, Н2Ои несгоревших молекул СО, Н2, а также N2; ко­личество свободного кислорода близко к 0. В результате взаимодействия газов над поверхностью полосы протека­ют реакции, которые характеризуются следующими уравнениями равновесия:

Fe + H2O--FeO + H2,

Fe + CО2 --FeO + CO,

C + CO2--2CO,

C + H2O--tCO + H2

Скорость протекания этих реакций и их направление оп­ределяются термодинамическими факторами и зависят от температуры и парциального давления компонентов газовой атмосферы. Кривые равновесного состояния окислительно-восстановительных реакций и реакций осаждения- растворения углерода представлены на рис.1.

Исследования фирм «Син ниппон сэйтэцу» и «Ниппон кокан» (Япония), показывают, что зоны окисления — восстановления в соответствии с уравнениями , пересекаются с зонами осаждения растворения углерода в соответствии с уравнениями. При этом опти­мальные условия работы таких печей достигаются в области температур 600—700 °С, верхний предел составляет 750 °С. Максимально допустимое значение соотношений СО/СО2 и Н22О определяется коэффициентом расхода воздуха. Для а = 0,90—0,98 их величина составляет 0,1—0,4 (рис. 49). На практике более точные значения соотношений окислительно-восстановительных компонентов подбираются экспериментальным путем.

По количественному составу компонентов атмосферы, газовым и тепловым режимам установлено, что в динамических условиях обработки полосы в печи прямого нагрева атмосфера продуктов горения является сильно восстановительной, если температура полосы не превышает критической .

Рис. 1. Кривые равновесного состояния окислительно-восстановительных ре­акций и реакций осаждения — восстановления углерода:

1, 2— экспериментальные результаты значений СО/СО2 на агрегате цинко­вания НЛМК; / — адгезия покрытия неудовлетворительная; 2— адгезия по­крытия удовлетворительная

С ростом содержания в продуктах горения суммы ком­понентов Н2+СО и увеличения температуры печи критиче­ская температура повышается (рис. 4,6 ). При содержа­нии Н2+СО менее 1,5 % работа печи характеризуется как неудовлетворительная. Оптимальное их содержание состав­ляет 4—5 %. Минимально допустимая температура печи для обработки в продуктах горения составляет 1204°С, при меньших температурах поверхность стали окисляется. Пол­ностью восстановительными свойствами обладает атмосфе­ра печи при температуре свыше 1260°С. Работа печи при температуре свыше 1310°С, как это видно из хода кривых на рис. 6, не имеет особых преимуществ.

С увеличением толщины обрабатываемой стали время, необходимое для ее нагрева до необходимых температур, увеличивается и критическая температура полосы снижа­ется (рис. 3, 5). Таким образом, работа при повышенных температурах печи является более эффективной при цин­ковании толстых полос.

Рис. 2. Зависимость соотноше­ния компонентов газовой атмо­сферы от коэффициента расхо­да воздуха а:

I, 3 —Нг2О; 2, 4 — COlCOr, 1. 2 — коксодоменный газ, тем­пература газовой атмосферы 1000 °С; 3, 4 — природный газ температура газовой атмосфе­ры 1370 °С

Рис. 3. Зависимость критиче­ской температуры полосы раз­ной толщины от содержания Н2+СО в продуктах горения при температуре печи 1316°С . Толщина полосы:

/ — 0,61 мм; 2 — 0,94 мм; 3 — 1,68 мм; 4 — 2,85 мм

Рис. 4. Зависимость критиче­ской температуры полосы тол­щиной 0,72 мм от содержания Н2+СО в продуктах горения при различной температуре пе­чи:

1 — 1204 °С; 2 1232 «G; 3 — 1260"С; 4 — 1316«G; 5—1427°С

Общая схема процесса подготовки и активации поверх­ности полосы при нагреве ее в продуктах неполного сгора­ния газового топлива с последующей обработкой в камере восстановительного нагрева представлена на рис. 7.

Наряду с удалением прокатной смазки и возможным слабым окислением металла (в зависимости от температуры про­дуктов сгорания и времени нагрева) на поверхности поло­сы может осаждаться углерод по реакции. Этот процесс происходит в зонах печи, где полоса еще не догрет до конечных температур. Выделение углерода происходит при температурах 300—600°С

Рис. 5. Зависимость критической температуры от толщины полосы при а=0,95, температуре печи 1316 °С . Цифры на кривой — время (с) обработки без окисления полосы в критических температур

Рис. 6. Зависимость критической температуры полосы от температуры печи при a=0,95 толщине полосы 0,72 мм

Образование углеродных остатков также может происходить при неполном выгора­нии масел, если их количество на полосе в исходном состо­яния превышает 1000 мг/м2.

После разогрева полосы до 500 °С одновременно с вы­делением углерода создаются условия для протекания ре­акции его растворения. На выходе из камеры нагрева поверхность полосы полностью или до минимума освобожда­ется от остатков углеродистых выделений. При очень высо­ких степенях зажиренности полосы (3875 г/м2) участки по­верхности не оцинковываются из-за остатков смазки в мик­роуглублениях стальной основы.

В случае применения низкотемпературной (до 500— 550 °С) обработки полосы (для предварительно отожжен­ной стали или продукции с сохранением прокатного наклепа) незначительное количество углерода удаляется в k;i мере восстановительного нагрева по реакции с водой, образующейся при восстановлении пленки оксидов по ре­акции.

Для удаления тонкой оксидной пленки, которая образу­ется в продуктах горения при нагреве до 550 °С требуется определенное время. Согласно диаграмме равновесия Fe-О2 при температурах до 570 °С и низком содержании кис­лорода на поверхности стали происходит образование Fe3O4, восстановление которого осуществляется по реак­ции:

Fe3O4 + 4H2-»3Fe + 4H2O.

В процессе подготовки к цинкованию полосу подвергают термической обработке для придания полосе необходимых механических свойств. В зависимости от способа цинкова­ния и конструкций агрегатов для этих целей используют различное термическое оборудование, которое будет рас­смотрено ниже.

После подготовительных операций изделия погружают в ванну с расплавленным цинком и выдерживают в нем оп­ределенное время, при этом изделия часто перемещают в расплаве цинка, извлекают из расплава и охлаждают. По­гружение, перемещение и извлечение изделий часто осуще­ствляют с помощью специальных устройств и приспособле­ний, конструкции которых разрабатывают в зависимости от вида цинкуемых изделий.

Рис. 7. Зависимость процессов подго­товки и активации поверхности метал­ла от температуры нагрева стальной полосы в камерах печи агрегата цин­кования:

а — испарение жировых загрязнений, б — протекание окислительно-восста­новительных реакций, в — осаждение и растворение

углерода; 1—камера безокислительного нагрева, 2 — камера, восстановительного нагрева.