Фрейм-ситуация формируется представлениями о прототипической ситуации и ее элементах, имеющих фиксированные роли и положения. Семантические модели управления фреймом затрагивают определенные требования к контексту, непосредственному семантическому и синтаксическому окружению языковой единицы. Контекстуальная норма является своего рода стереотипом. Ожидания определяются знаниями о стандартном контексте и ситуации. При заполнении переменных учитывается ситуационный контекст, что позволяет говорить о контекстно-обусловленных стратегиях заполнения базового фрейма, т.е. идет приписывание моделей управления конкретным лексическим единицам. Недостаточная конкретизация контекста приводит к вводу «проясняющих» деталей.
Каждый фрейм-ситуация представляет собой более или менее полный список понятий, позволяющий правильно/ адекватно действовать в данной ситуации. В определении соответствия/ несоответствия элемента текста какому-либо фрейму, выбранному в качестве ограничителя сочетаемости элементов, участвуют следующие условия:
Данные условия касаются признаков фрейма и семантических условий заполнения его узлов, регламентирующих семантическую сочетаемость. Приписывание слову значения, конкретного семантического и синтаксического управления, обеспечивающего воспроизводимость и эффективность конкретного акта коммуникации, позволяет говорить о ролевой семантике и рассмотреть особенности заполнения узлов фрейма, например, при переводе.
Недостатками фреймового подхода считается то, что «различие между концептами как таковыми и организацией концептуального знания во фреймы является не вполне четким — теория допускает размытые границы между ними» (ван Дейк 1989: 17). Несмотря на то, что «для генерации текстов аппарат фреймов практически непригоден, так как задает слишком жесткие рамки структурирования текстов» (Севбо 1991: 29), с его помощью можно описать структурный фрейм текста, включающий множество признаков, позволяющих соотнести его с определенным типом текста и с описанными в тексте ситуациями.
Особенности структуры фрейма
Так как фрейм можно представить себе в виде сети, состоящей из узлов и связей между ними, то каждый узел должен быть заполнен своим "заданием", представляющим собой те или иные характерные черты ситуации, которой он соответствует. В общем случае во фрейме можно выделить несколько уровней, иерархически связанных друг с другом. Узлы фрейма, принадлежащие к верхним уровням, представляют собой более общие вещи, которые всегда справедливы в отношении предполагаемой ситуации. Эти узлы уже заполнены своими заданиями. Например, узел самого верхнего уровня фрейма обычно заполнен названием ситуации, т. е. названием зрительного образа (это может быть, например, "куб"), названием действия (например, "уборка комнаты"). Узлы нижних уровней по большей части не заполнены своими заданиями. Такие незаполненные узлы называют терминалами. Они должны быть заполнены конкретными данными, представляющими собой их возможные задания в процессе приспособления фрейма к конкретной ситуации, из того класса ситуаций, который представляет данный фрейм. Каждый терминал может устанавливать условия, которым должны отвечать его задания. Простые условия устанавливаются "маркерами", которые могут потребовать, например, чтобы заданием терминала было какое-то лицо, какой-то предмет достаточной величины, какое-то элементарное действие или "указатель" на какой-то другой фрейм, представляющий собой другую, обычно более частную ситуацию и называемый субфреймом. Более сложные условия могут устанавливать связи между заданиями для нескольких терминалов.
Группа фреймов может объединяться в систему фреймов. Результаты характерных действий отражаются с помощью трансформаций между фреймами системы. Они используются, чтобы ускорить вычисления определенных видов при представлении типичных изменений одной и той же ситуации.
В случае зрительного образа различные фреймы системы описывают картину с различных точек наблюдения, а трансформация одного фрейма в другой отражают результаты перемещения из одного места в другое. Для фреймов невизуальных видов различия между фреймами системы могут отражать действия, причинно-следственные связи и изменения понятийной точки зрения. Различные фреймы системы используют одни и те же терминалы
После того как выбран фрейм для представления ситуации, процесс согласования фрейма с данной конкретной ситуацией состоят в нахождении таких заданий для терминалов фрейма, которые совместимы с маркерами терминалов. Процесс согласования частично контролируется информацией, связанной с фреймом (в которую входит и информация относительно того, как действовать в случае появления необычных ситуаций, "сюрпризов"), а частично знанием текущих целей.
Если выбранный фрейм не удается согласовать с реальностью, т. е. если невозможно найти задания для терминалов, которые соответствующим образом согласуются с условиями маркера, то происходит обращение к так называемой сети поиска информации, с помощью которой соединяются между собой системы фреймов. Эта сеть позволяет найти другие способы представления знаний о фактах, аналогиях и другой информации, которую можно использовать для согласования с реальностью.
Фрейм - визуальный образ
В качестве простейшего примера, иллюстрирующего представление знаний с помощью фреймов, рассмотрим приведенную в работе М.Минского возможную систему фреймов для элементарного зрительного образа - куба. В соответствии с использованным в работе А.Гузмана(1967) символическим представлением тел правильной формы с помощью "областей" и "связей" между ними можно допустить, что результатом разглядывания куба является структура, подобная показанной на рис.П1а. Эту структуру можно идентифицировать с фреймом куба при разглядывании его с соответствующей позиции. Области A, E и B являются терминалами фрейма, задания для которых соответствуют возможным деталям или обозначениям на видимых с данной позиции гранях куба. Если позиция наблюдения куба перемещается вправо, то грань А исчезает из поля зрения и становится видимой грань С.
Если бы потребовалось провести полный анализ этого нового визуального образа, необходимо было бы:
1) утратить знания о грани А,
2) повторно воспринять (с помощью соответствующих "вычислений") образ грани В,
3) воспринять образ новой грани С.
Однако, поскольку известно, что произошло перемещение позиции наблюдения вправо, можно сохранить знания о грани В в виде задания терминалу левой грани нового фрейма куба, соответствующего новой позиции наблюдения. Кроме того, чтобы сохранить знания и о грани А, можно ввести дополнительный терминал невидимой грани, относящийся к этому новому фрейму, как это показано на рис.П1б.
При возвращении на начальную позицию наблюдения оказывается возможным восстановить визуальный образ куба без каких-либо новых "вычислений". Для этого достаточно "вызвать" из памяти первый фрейм. Очевидно, полезно сохранить знания и о грани С, для чего можно ввести дополнительный терминал этой невидимой грани в первом фрейме (рис.П1б).
Можно продолжить эту процедуру построения системы фреймов, соответствующую перемещению точки наблюдения вокруг куба. Это привело бы к получению более широкой системы фреймов, в которой каждый фрейм соответствует своей позиции наблюдения куба. На рис.П1в показана система фреймов, состоящая из трех фреймов, каждый из которых представляет визуальный образ, получающийся в одной из трех позиций наблюдения. Две из этих позиций соответствуют перемещению вправо и влево на 45° относительно третьей позиции; указатели между фреймами соответствуют перемещениям точки наблюдения. Важно обратить внимание на выявленное в этом примере важное свойство представления ситуации с помощью системы фреймов. Оно состоит в том, что различные фреймы, входящие в систему, используют один и тот же терминал, соответствующий одной и той же физической черте, которая видна из различных позиций наблюдения. Это позволяет заранее сосредоточить в одном месте информацию о свойствах известных объектов независимо от позиций наблюдения, которых, особенно для предметов сложной формы, может быть очень много. В результате экономится память и сокращается процесс восприятия при изменении позиций наблюдения, так как память уже располагает необходимой информацией и время затрачивается лишь на "извлечение" ее из памяти.
Сами же системы фреймов, по-видимому, сформированы в памяти не для визуальных образов каждого возможного предмета, а для обычно используемых "основных форм", которые, вступая в различные комбинации, образуют системы фреймов для новых случаев. Это создает дополнительные возможности экономии памяти. Так же, как и в случае отдельных заранее сформированных терминалов, принадлежащих фрейму, наличие в памяти заранее заготовленного набора систем фреймов ускоряет процесс восприятия, так как новый образ не приходится строить заново, а только извлекать его из памяти и "приспосабливать" к действительности.