Данная архитектура, называемая также full-flash, относится к преобразователям первого класса (рисунок 2.3).
N-разрядный АЦП такого типа содержит (2N-1) компараторов и столько же источников опорного напряжения. На очередном цикле входное напряжение сохраняется схемой выборки и хранения, после чего происходит его сравнение со всеми опорными напряжениями. В результате с выходов компараторов снимается 2N-1 – разрядный код, который преобразуется дешифратором в выходной код.
Рисунок 2.3 – Структурная схема АЦП параллельного преобразования
Реализация алгоритма преобразования в таком АЦП осуществляется за один цикл, поэтому такая архитектура позволяет достичь максимального быстродействия. Однако с увеличением разрядности число элементов схемы и, соответственно, площадь кристалла растут в геометрической прогрессии. Поэтому разрядность АЦП параллельного преобразования редко превышает восемь бит.
2.3.2. Конвейерная архитектура
Данная архитектура позволяет повысить разрядность full flash АЦП путем реализации алгоритма преобразования в несколько этапов (рисунок 2.4). Здесь входное напряжение сохраняется в схеме выборки и хранения, после чего M-битный АЦП производит грубую оценку входного сигнала (получение старших M битов). ЦАП затем преобразует цифровой код в аналоговый сигнал, который вычитается из входного сигнала. Остаток после усиления преобразуется в АЦП для получения младших N битов.
Рисунок 2.4 – Структурная схема конвейерного АЦП
При использовании восьмиразрядных АЦП параллельного преобразования, такой подход позволяет получить 16-битный АЦП. При этом число компараторов составляет 510. Реализация 16-битного АЦП параллельного преобразования потребовала бы 65536 компаратора. В общем случае можно использовать K АЦП, включенных в последовательность (рисунок 2.5). Время, затраченное на алгоритм преобразования, при этом составляет (K+1) циклов, включая цикл выборки входного напряжения.
Рисунок 2.5 – K-этапная конвейерная архитектура
Бесконечное увеличение разрядности данной архитектуры ограничено сложностями согласования характеристик составных элементов. Каждое преобразование сигнала «аналоговый → цифровой → аналоговый» дает погрешность в вычислении остатка. С увеличением числа этапов, соответственно, растет погрешность.
2.3.3. Архитектура последовательного приближения
Алгоритм последовательного приближения осуществляет аналого-цифровое преобразование за несколько циклов путем использования ранее определенных битов для получения следующего бита цифрового кода (рисунок 2.6). Здесь, после выборки входного напряжения, оно сравнивается с половинным значением динамического диапазона АЦП. Таки образом определяется первый бит выходного кода. В следующем цикле происходит сравнение с четвертью диапазона, получение второго бита и так далее. Алгоритм преобразования для n-разрядного АЦП занимает максимум (n+1) циклов, включая цикл выборки входного напряжения.
Рисунок 2.6 – График последовательного приближения
Структурная схема АЦП последовательного приближения представлена на рисунке 2.7. Достоинствами АЦП данного типа являются простота схемы и низкая потребляемая мощность. Скорость преобразования обратно пропорциональна разрядности АЦП.
Рисунок 2.7 – Структурная схема АЦП последовательного приближения
2.3.4. Интегрирующие АЦП
Преобразование входного сигнала в АЦП данного типа осуществляется в два этапа (рисунок 2.8). На первом этапе происходит заряд интегрирующего конденсатора входным напряжением в течение фиксированного промежутка времени (периода интегрирования). На втором этапе происходит разряд конденсатора заданным током до нулевого напряжения. Длительность разряда при этом пропорциональна величине входного напряжения.
Рисунок 2.8 – Процесс преобразования входного напряжения
в интегрирующем АЦП
АЦП данного типа обладают следующими преимуществами:
– нечувствительность к импульсным помехам;
– нечувствительность к периодическим помехам, если их период в целое число раз меньше периода интегрирования;
– разрядность 14…20 бит;
– ключевая особенность – нечувствительность к изменениям тактовой частоты.
Однако недостатком является низкое время преобразования, порядка 1…1000мс.
2.3.5. Сигма-дельта архитектура
Архитектура сигма-дельта относится к классу АЦП с передискретизацией. Ключевая особенность таких преобразователей состоит в многократной выборке входного сигнала с последующей обработкой. Блок-схема сигма-дельта АЦП представлена на рисунке 2.9.
В схему входят следующие функциональные блоки:
– АЦП на базе сигма-дельта модулятора высокого порядка;
– цифровой фильтр нижних частот;
– дециматор (прореживающий фильтр).
Рисунок 2.9 – Блок-схема сигма-дельта АЦП
Блок АЦП производит оцифровку входного сигнала, а также подавление возникающего шума на низких частотах, за счет вытеснения его в область высоких частот. Выходной сигнал с преобразователя поступает на цифровой фильтр нижних частот, где производится его усреднение. Последним каскадом сигма-дельта преобразователя является фильтр децимации. Его основная функция – понижение скорости передачи выходных данных, чтобы она соответствовала полосе частот входного сигнала. Процесс преобразования частотного спектра сигнала в сигма-дельта АЦП представлен на рисунке 2.10.
Рисунок 2.10 – Изменение спектра входного сигнала в процессе преобразования
Эффективный алгоритм подавления шумов позволяет получать сигма-дельта АЦП высокой разрядности. Соответственно, АЦП данного типа обеспечивают минимальную погрешность дискретизации, по сравнению с другими преобразователями. Недостатком архитектуры сигма-дельта является невозможность обработки быстро изменяющихся сигналов.
Выводы
Аналого-цифровые преобразователи обладают рядом характеристик, которые необходимо учитывать при проектировании систем сбора данных. Первое, на что следует обратить внимание при выборе АЦП – скорость изменения входного сигнала и его допустимая погрешность преобразования. Из рассмотренных архитектур наибольшей скоростью преобразования обладают АЦП параллельного преобразования и конвейерного типа; наибольшей разрядностью – сигма-дельта АЦП. Архитектура последовательного приближения занимает промежуточное положение и отличается относительной простотой реализации.
3. ПРИМЕНЕНИЕ АЦП ДЛЯ ИЗМЕРЕНИЯ РАЗЛИЧНЫХ
ФИЗИЧЕСКИХ ВЕЛИЧИН
При проектировании цепей для измерения аналоговых сигналов, необходимо учитывать множество факторов, чтобы в результате измерения получить достоверные данные. Например, при построении ССД на базе резистивных датчиков, необходимо учитывать изменение сопротивления при изменении физической величины; погрешность измерений, вызванная влиянием цепей передачи сигналов; температурный коэффициент изменения сопротивления; погрешность измерения; влияние помех и т.д.
Ситуация усложняется, когда необходимо построить систему, работающую с различными по скорости изменения и точности представления физическими величинами.
3.1. Измерение напряжения и тока
Преобразование напряжения и тока в цифровой код используется при построении цифровых вольт- и амперметров. Простейшая схема цифрового вольтметра представлена на рисунке 3.1. Здесь измеряемое напряжение при необходимости усиливается и фильтруется, после чего поступает на вход АЦП. Обработку цифрового кода, полученного с выхода АЦП, осуществляет микроконтроллер, который затем выдает необходимую информацию на устройство индикации. В качестве пребразователя может быть использован внутренний АЦП микроконтроллера.
Рисунок 3.1 – Структурная схема цифрового вольтметра
При использовании 8-битного АЦП удобно использовать ИОН с напряжением 2,55В, в этом случае для диапазона входных напряжений (0…2,55В) существенно упрощается обработка цифрового кода. При использовании в качестве устройства индикации семисегментного индикатора, вместо микроконтроллера может быть использована специализированная микросхема.