Смекни!
smekni.com

Задержка дыхания: Польза или Вред? (стр. 1 из 4)

Влияние гипоксических нагрузок на организм подводного пловца.

Введение
Всем известно, что спорт, в отличие от физкультуры, вреден для здоровья. Как человеку, решившему более серьезно заняться любимым хобби – подводному плаванию на задержке дыхания, мне стало интересно смогу ли я выдержать ту грань, что проходит между оздоровительным эффектом физкультуры и разрушающим воздействии спорта. Первое чем пришло в голову озаботится – не вредна ли задержка дыхания сама по себе. Особенно когда начинаешь её так часто практиковать. Исследованию этого вопроса и посвящен реферат.

Гипоксия
Начнем с определения. Гипоксия – кислородная недостаточность – состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его использования в процессе биологического окисления. Компенсаторной реакцией организма является увеличение уровня гемоглобина в крови. Пусковой механизм развития гипоксии связан с гипоксемией - снижением содержания кислорода в артериальной крови.
Здоровый организм может оказаться в состоянии гипоксии, если потребность в кислороде (кислородный запрос) выше, чем возможность ее удовлетворить. Наиболее распространенными причинами возникновения такого состояния являются:

1. низкое содержание кислорода во вдыхаемом воздухе в условиях высокогорья;

2. временное прекращение или ослабление легочной вентиляции при нырянии на различную глубину;

3. возрастание потребности в кислороде при выполнении мышечной работы.

В первых двух ситуациях при сохраненной или даже сниженной потребности в кислороде уменьшается возможность его получения, тогда как при выполнении мышечной работы возможности обеспечения кислородом отстают от растущей потребности, связанной с повышенным расходом энергии.

Кислород необходим для процессов окислительного фосфорилирования, то есть для синтеза АТФ, и его дефицит нарушает протекание всех процессов в организме, зависящих от энергии АТФ: работу мембранных насосов, транспортирующих ионы против градиента, синтез медиаторов и высокомолекулярных соединений – ферментов, рецепторов для гормонов и медиаторов. Если это происходит в клетках центральной нервной системы, нормальное протекание процессов возбуждения и передачи нервного импульса становится невозможным и начинаются сбои в нервной регуляции функций организма.
Нехватка кислорода стимулирует использование организмом дополнительных, анаэробных источников энергии – расщепления гликогена до молочной кислоты. Выход энергии АТФ при этом мал. Кроме того, возникают неприятности в виде закисления внутренней среды организма молочной кислотой и другими недоокисленными метаболитами. Сдвиг pH еще более ухудшает условия деятельности высокомолекулярных структур, способных функционировать в узком диапазоне pH и быстро теряющих активность при увеличении концентрации H+-ионов.
Пребывание на высоте, выполнение физической работы, ныряние на различную глубину – нормальный элемент существования многих высших организмов, что свидетельствует о возможности адаптации к возникающим в этих случаях гипоксическим состояниям.

Аэробный и анаэробный пути добычи энергии
Ещё 600 млн. лет назад кислорода на Земле практически не существовало. Организмы получали энергию с помощью расщепления глюкозы путём так называемого гликолиза. Но этот бескислородный (анаэробный) путь добычи энергии слишком неэффективен. Примерно 400 лет назад, благодаря появлению фотосинтеза, в атмосфере Земли уже около 2% кислорода. Организмы постепенно переходят на добычу энергии при помощи расщепления глюкозы кислородом - это так называемое окислительное фосфорилирование (аэробный путь). Этот механизм у большинства животных и человека становится основным. На него приходится около 90% всей получаемой организмом энергии, на гликолиз около 10%. Вместе с тем, древний способ получения энергии - анаэробный гликолиз - сохраняется как резервный и при определенных условиях (при тренировке) активизируется.
Сегодня в атмосфере уже 21% (!) кислорода. Как видим - это гораздо больше, чем было на заре становления Жизни. Некоторые специалисты считают, что для нормальной работы организма хватило бы и трети этого количества.
Примечательно, что развитие организма повторяет основные стадии развития Жизни. Оплодотворенная яйцеклетка в первые дни находится почти в бескислородной среде - кислород для нее просто губителен. И только по мере имплантации и формирования плацентарного кровообращения постепенно начинает осуществляться аэробный способ производства энергии.
Минимальные потребности в глюкозе (главный путь утилизации глюкозы) имеют все ткани, но у некоторых из них (например, тканей мозга, эритроцитов) эти потребности весьма значительны. Гликолиз протекает во всех клетках. Это уникальный путь, поскольку он может использовать кислород, если последний доступен (аэробные условия), но может протекать и в отсутствие кислорода (анаэробные условия).
Уже на ранних этапах изучения метаболизма углеводов было установлено, что процесс брожения в дрожжах во многом сходен с распадом гликоген а в мышце. Исследования гликолитического пути проводили именно на этих двух системах.
При изучении биохимических изменений в ходе мышечного сокращения было установлено, что при функционировании мышцы в анаэробной (бескислородной) среде происходит исчезновение гликогена и появление пирувата и лактата в качестве главных конечных продуктов. Если затем обеспечить поступление кислорода, наблюдается "аэробное восстановление": образуется гликоген, и исчезают пируват и лактат. При работе мышцы в аэробных условиях накопления лактата не происходит, а пируват окисляется далее, превращаясь в CO2, и H2O. В анаэробных условиях реокисление NADH путем переноса восстановительных эквивалентов на дыхательную цепь и далее на кислород происходить не может. Поэтому NADH восстанавливает пируват в лактат. Реокисление NADH путем образования лактата обеспечивает возможность протекания гликолиза в отсутствие кислорода, поскольку поставляется NAD+ необходимый для глицеральдегид-3-фосфатдегидрогеназной реакции. Таким образом, в тканях, функционирующих в условиях гипоксии , наблюдается образование лактата ( Пентозофосфатный путь, гликолиз, глюконеогенез: метаболическая карта ). Это в особенности справедливо в отношении скелетной мышцы, интенсивность работы которой в определенных пределах не зависит от поступления кислорода. Образующийся лактат может быть обнаружен в тканях, крови и моче. Гликолиз в эритроцит ах даже в аэробных условиях всегда завершается образованием лактата, поскольку в этих клетках отсутствуют митохондрии, содержащие ферментные системы аэробного окисления пирувата. Эритроциты млекопитающих уникальны в том отношении, что около 90% их потребностей, в энергии обеспечивается гликолизом. Помимо скелетной мышцы и эритроцитов ряд других тканей ( мозг , желудочно-кишечный тракт , мозговой слой почек , сетчатка и кожа ) в норме частично используют энергию гликолиза и образуют молочную кислоту. Печень, почки и сердце обычно утилизируют лактат, но в условиях гипоксии образуют его.

Свободные радикалы
По современным представлениям, около 2% всего поступившего в организм кислорода превращается в свободные радикалы - агрессивные обрывки молекул, которые разрушают организм. Установлено в огромном количестве экспериментов, что свободные радикалы отнимают у нас не один десяток лет жизни и провоцируют наиболее опасные заболевания, как-то рак, болезни сердца, мозга и др. Из всех разрушающих организм факторов, повреждение его свободными радикалами ставится обычно на первое место. Свободные радикалы окисляют организм, иначе говоря, способствуют его прокисанию. (Ещё Ломоносов и Лавуазье сравнивали дыхание с горением.) Некоторые учёные так и формулируют: старение - это прокисание. Как будто всё логично: чем меньше поступает кислорода в организм, тем меньше свободных радикалов, тем медленнее прокисание, тем дольше жизнь. С помощью наиболее мощных веществ, обезвреживающих свободные радикалы, удавалось продлевать жизнь животных на 60%.

Адаптация
Главная задача Жизни - приспособиться, иначе говоря, адаптироваться к окружающей среде. Очевидно, что природа должна была позаботиться об этом и наделить организмы соответствующими механизмами. И такой универсальный механизм имеется. Заключается он в следующем.
Предположим на организм совершено какое-то вредное разрушительное воздействие и в организме произошли разрушительные изменения. В ответ на это в нём запускаются восстановительные процессы. Но мудрость природы заключается в том, что вслед за полным восстановлением разрушенной функции происходит так называемое сверхвосстановление. То есть, организм на какое-то время становится ещё более стойким, чем был ранее.
Именно на этом принципе основаны, например, физические тренировки спортсменов. Физическая нагрузка приводит к определённому разрушению структур мышечных или иных клеток, после чего, за время отдыха, разрушенные структуры восстанавливаются сперва до нормы, а затем и сверх нормы. Если каждую последующую тренировку совершать в момент сверхвосстановления, то спортсмен будет постоянно прогрессировать. Очень важно заметить, что каждая функция организма реагирует на нагрузку по-разному. Так, спортсменам обычно требуется тренироваться по несколько раз в неделю; высоко-тренированным ежедневно и не по разу. Крайне важна и интенсивность нагрузки. Если она будет малой, достаточных разрушений в организме не произойдёт, то и сверхвосстановления и увеличения стойкости организма не произойдёт также. Если нагрузка будет слишком высокой, то наступит так называемый срыв адаптации с тяжёлыми для организма последствиями.
Примечательно, что принципу сверхвосстановления подвержены все функции организма. Сторонникам долголетия, например, может быть интересен такой факт. Учёные-физики из центра «Пущино» проводили единоразовое облучение молодых мышек определённой дозой радиации. В ответ на облучение, у мышек наблюдался некоторый всплеск мутаций в молекулах ДНК. Однако со временем состояние животных приходило в норму. Затем они становились здоровей обычного: меньше болели, в частности раком, а их продолжительность жизни заметно увеличивалась.
Итак, наш организм в ответ на вредное разрушительное воздействие отвечает приспособительной реакцией, которая делает его более стойким по отношению к этому воздействию, а иногда не только к нему но и некоторым другим. В первом случае, мы имеем дело со специфической адаптацией, во втором с неспецифической или общей адаптацией.
Грамотно используя способность организма к адаптации мы можем сделать наш организм более сильным, выносливым, здоровым, и заметно увеличить продолжительность жизни! Возможность адаптации к гипоксии (нехватке кислорода) занимает здесь одно из первых мест.

Адаптивные стратегии
Основные адаптивные стратегии для всех трех рассматриваемых случаев возникновения гипоксии являются общими: