Бескорпусная герметизация неорганическими материалами
Защита поверхности p-n-переходов вазелином и цеолитами.
При сборке полупроводниковых кристаллов с p-n-переходами в корпуса используют метод стабилизации параметров введением в корпус прибора кремнийорганического вазелина в сочетании с влагопоглощающими добавками (гетерами), например с цеолитом. Изоляционный вазелин представляет собой смесь кремнийорганической жидкости с мелкодисперсным наполнителем в виде вязкой пасты. Широкое применение получили кремнийорганические вазелины КВ-3, КВ-2, КВ-3А.
Вазелин обладает высокими изоляционными свойствами: удельное объёмное сопротивление вазелина при температуре 200С составляет 1014ом*, а при 1500-1012ом*см; тангенс угла диэлектрических потерь при частоте 106 гц-0,006; диэлектрическая проницаемость-2,8, а диэлектрическая прочность-15 кВ \ мм.
Перед нанесением на полупроводниковые кристаллы или корпуса вазелин подвергают вакуумной сушке при температуре 1500С в течение 8-10 ч. Технологический процесс нанесение вазелина проводиться в скафандрах в атмосфере осушенного азота.
Так же герметизацию производят цеолитным адсорбентом и синтетическими цеолитами:
Цеолитный адсорбент — порошкообразный синтетический цеолитный материал CaA, применяемый для создания защитной атмосферы во внутренних областях корпусов полупроводниковых приборов, выпускается двух видов: мелкокристаллический с размерами кристаллов от 1 до 5 мкм и крупнокристаллический с размерами кристаллов от 3 до 8 мкм. Статическая активность – влогоёмкость при относительной влажности воздуха 0,03% в течение 24 ч равна 18%. На основе порошка изготовляют таблетки диаметром 4 и 6 мм и толщиной 0,6 мм.
Синтетические цеолиты — высокоэффективные алюмосиликатные адсорбенты; в обезвоженном виде – пористые кристаллы с размерами около 1 мкм. Поры цеолитов представляют собой сферические полости с диаметром от 1,14 до 1,19 нм, соединённые между собой более узкими отверстиями, называемые окнами. Эффективные диаметры окон существенно отличаются в каждом типе цеолита и зависят от природы ионообменного катиона. Выпускаются пять марок цеолитов: КА, NaA, CaA, NaX и CaX, в которых эффективный диаметр окон соответственно равен 0,3;0,4;0,5;0,8;0,9 нм. Находящиеся в полостях цеолитов катионы создают в них области с неоднородными электростатическими полями, поэтому цеолиты особенно энергично адсорбируют электрически несимметричные молекулы воды, двуокиси углерода, метанола, а так же органических веществ.
Особенностью адсорбционных свойств пористых кристаллов цеолитов является молекулярно-ситовое действие; в первичной пористой структуре адсорбируются молекулы малых размеров, более крупные молекулы, для которых входы в полости через окна недоступны, не адсорбируются. Поэтому при использовании цеолитов необходимо учитывать органические адсорбируемости веществ за счёт молекулярно-ситового действия.
Кристаллы цеолитов микроскопических размеров в смеси с добавками 15–20% глины формируют в таблетки, гранулы или шарики различных размеров, которые для повышения механической прочности подвергают термической обработке в течение 2-6 часов при 550-600 С. Адсорбционные свойства формованных цеолитов по сравнению с кристаллическими обычно ниже на 20% в результате введения глины. Формованные цеолиты применяются для глубокой осушки и тонкой очистки газов и жидкостей.
Таблице 7.Основные свойства цеолитов.
Характеристика | Марка цеолита | ||||
KA | NaK | CaA | NaX | CaX | |
Насыпная масса, г/см2 | 0,62 | 0,65 | 0,65 | 0,6 | 0,6 |
Механическая прочность на раздавливание, Н/м2 | 4×106 | 5×106 | 5×106 | 4×106 | 4×106 |
Водостойкость, мас. % | 96 | 96 | 96 | 96 | 96 |
Динамическая активность по парам воды, мг/см3, для таблеток диаметров, мм: | |||||
4,5 | 62 | 90 | 72 | 95 | 90 |
3,6 | 70 | 10 | 80 | 100 | 95 |
2,0 | 85 | 12 | 95 | 105 | 100 |
Динамическая активность по углекислому газу, мг/см3 | 2,0 | — | — | — | — |
Динамическая активность по парам бензола, мг/см3, для таблеток диаметром, мм: | |||||
4,5 | — | — | — | 52 | 52 |
3,6 | — | — | — | 65 | 62 |
2,0 | — | — | — | 68 | 65 |
Потери при прокаливании, мас. % | 5 | 5 | 5 | 5 | 5 |
Защита p-n-переходов плёнками окислов металлов.
В полупроводниковой технологии для защиты кристаллов с p-n-переходами применяются плёнки на основе окисей металлов: алюминия, титана, бериллия, циркония. Исходный материал берут в виде порошка, а в качестве несущего агента может быть использован галоген или галоидное соединение водорода. Через рабочую камеру пропускают инертный газ и устанавливают перепад температур между источником защитного материала и полупроводниковым кристаллом. Температура источника должна быть выше температуры кристаллов, причём с увеличением разницы температуры скорость реакции повышается.
Для осаждения защитных плёнок Al203, BeO, TiO2, ZnO2 температуру источника выбирают в диапазоне 800–1200 С, кристаллов – в диапазоне 400–800 С, а расстояние между ними устанавливается в зависимости от требуемой разницы температур (от 10 до 15 см) В таблице 5 приведены режимы осаждения защитных плёнок окислов металлов.
Таблица 8
Материал источника | Несущий агент | Температура источника, 0С | Температура кристаллов, 0С |
Al2O3 | HCl(HBr) | 800–1000 | 400–700 |
BeO | HCl(HBr) | 900–1200 | 500–750 |
TiO2 | HCl(HBr,Cl2) | 800–1000 | 500–700 |
ZnO2 | HCl(HBr) | 1000–1200 | 500–800 |
Процесс осаждения защитной плёнки на полупроводниковые кристаллы с p-n-переходами проводят в кварцевой трубе, в одном конце которого помещают материал источника, например Al2O3 , а в другом – подложку с кристаллами. Сначала в трубе создают вакуум, а потом вводят необходимое количество инертного газа. Труба имеет две температурные зоны: 900 С – для источника, 500 С – для кристаллов.
В качестве защитного материала можно использовать также свинцовый сурик Pb3O4, растворенный в смеси из 7,5% полиэтилена и 92%полибутилена и перемещённый при температуре 125–160 0С. Полученный состав при температуре 112 С наносят на поверхность кристаллов с p-n-переходами. В качестве окисляющего агента используют хромат цинка ZnCrO4. Кроме того, защитные плёнки могут быть получены на основе смесей Pb3O4 и ZnCrO4, SrCrO4 . Порошок этих веществ смешивают с летучими растворителями получают суспензии, которые наносят на поверхность полупроводниковых кристаллов распылением. Кристаллы с напылённым защитным слоем выдерживают в течение нескольких минут при комнатной температуре до полного испарения растворителя, а затем нагревают до 200 С. В результате нагревания частицы нанесённого вещества выделяют ионы кислорода, которые замещают ионы водорода на поверхности полупроводникового материала, и на поверхности кристаллов образуется плотная защитная плёнка. Этот способ защиты позволяет снизить обратные токи приборов на один-два порядка.
Вакуумным катодным распылением Al2O3, MgF2, Ta2O5, TiO2, ThO2, ZnO2, BeO, и MgO на поверхности кристаллов с p-n-переходами могут быть получены защитные диэлектрические плёнки, которые представляют собой с поверхностью полупроводникового кристалла.
Для защиты и стабилизации электрических параметров p-n-переходов проводят процесс титанирования, который состоит в том, что на поверхность кристаллов с p-n-переходами осаждают один из сложных эфиров: негидролизированный титановый эфир, тетраизопропилтитанат, тетрабутилтитанат или тетраэтилгексинтитанат. Полученное покрытие стабилизируют термическим прогревом или при помощи катализаторов и получают прочие, химически связанные с поверхностью полупроводникового кристалла плёнки двуокиси титана.
Другой способ титанирования заключается в замещении слоя окиси германия на поверхности кристалла германия окисью титаната, которая наносится в потоке фтора. Фтор, проходя по трубопроводу и насыщаясь титаном, образует газообразный фторид титана, который реагирует с поверхностью кристаллов, покрытий слоем окиси германия. В результате на поверхности кристаллов образуется окись титана и парообразный фторид германия.
Для защиты поверхностей p-n-переходов может быть использован нагрев кристаллов при 1200 С в окисляющей атмосфере в присутствии ванадия или его соединения. Ванадий находится в рабочей камере в виде порошкообразной пятиокиси V2O5. Через рабочую камеру пропускают водяные пары, содержащие кислород с парциальным давлением 3,3*103 Па. После получения плёнки толщиной около 1 мкм лодочку с порошком V2O5 медленно выдвигают из печи.
Поверхность p-n-переходов защищают также плёнками окиси вольфрама, наносимыми плазменными распылением в атмосфере кислорода. Толщина плёнок от 10 до 1000 нм. Давление кислорода в рабочей камере может быть выбрано в диапазоне от 2,6*103 до6,6 Па. Катодом служит чашеобразный диск из вольфрама, а анодом – полупроводниковые пластины с p-n-переходами. Температура процесса не должна превышать 300 С. Напряжение на электродах от выбранного давления газа внутри рабочей камеры не должно превышать 500 В.