Медленные фильтры используют для фильтрования некоагулированных сточных вод. Скорость фильтрования в них зависит от концентрации взвешенных частиц. При содержании взвешенных примесей в сточных водах до 25 мг/л принимают скорость фильтрования 0,2—0,3 м3/ч; при 25— 50 мг/л ОД—0,2 м3/ч. Достоинством таких фильтров является высокая степень очистки, недостатком — большие размеры, высокая стоимость и сложность удаления осадков.
Скоростные фильтры (рис. 5.6) могут быть двух типов: однослойные и многослойные. У однослойных фильтров фильтрующий слой состоит из однородного материала, у многослойных — из смеси различных материалов (песок, антрацит и др.). Сточная вода проходит через фильтрующий материал и удаляется из фильтра. После засорения фильтрующего материала проводят его промывку, подавая промывную воду снизу вверх. Общая высота слоя загрузки составляет 1,5—2,0 м. Скорость фильтрования принимается равной 12—20 м/ч. Для более эффективной очистки фильтров используют водо-воздушную промывку, при которой зернистый слой сначала продувается воздухом для взрыхления, а затем подается вода. Интенсивность подачи воздуха изменяется в пределах от 18 до 22 л (м2/с), а воды — от 6 до 7 л (м2/с). После отстаивания сточные воды содержат тонкодиспергированные нефтепродукты, которые можно выделить фильтрованием. В качестве фильтрующего материала применяют кварцевый песок, керамзит, графит, кокс, полимерные материалы. При фильтровании сточных вод, содержащих нефть, через песчаный фильтр адгезия гидрофильных зерен песка и гидрофобных нефтяных частиц происходит в результате неодинаковых гидрофильных свойств отдельных участков поверхности зерен песка. Сила адгезии частиц нефтепродуктов зависит от энергии поверхностного натяжения и размера частиц нефтепродуктов. Для нормальной работы фильтра исходное содержание нефтепродуктов в сточной воде не должно превышать 60—80 мг/л, а механических примесей — 50 мг/л.
Для очистки нефтесодержащих сточных вод внедрена промышленная установка «Кристалл» (рис. 5.7). На этой установке были испытаны клеевые объемные фильтровальные материалы сипрон и вазопрон, которые показали высокую адсорбционную активность к нефтепродуктам. Практичен кое применение находит эффективный фильтрующий материал пенополиуретан (ППУ), 1 дм2 которого поглощает 950—980 г нефтепродуктов. Пенополиуретан регенерируют так же, как нетканые материалы; при этом с него удаляется до 95% нефтепродуктов. Применение этого материала позволяет проводить фильтрование со скоростью 15—30 м3/ч. На основе пенополиуретана разработаны фильтры «Полимер» для очистки сточных вод от масел и нефтепродуктов. Фильтры представляют собой прямоугольные в плане емкости, заполненные измельченным пенополиуретаном (рис. 5.8). Сточные воды поступают в верхнюю часть фильтра и равномерно распределяются по всей площади загрузки. Пройдя слой ППУ, стоки освобождаются от масел, нефтепродуктов, взвешенных веществ и по обводному трубопроводу выводятся из фильтра, регенерация которого осуществляется
механическим отжимом.
Общая схема очистных сооружений включает песколовки, нефтеловушки и фильтры «Полимер». Работа по та кой схеме позволяет получить высокую степень очистки, обеспечивающую возможность использования воды в обороте, а также дает большую экономию средств. Внедрение фильтров «Полимер» более чем в 20 раз повышает грязсемкость кварцевого песка и полистирола, а количество регенерата, образующегося в процессе механического отжатия ППУ, в 30—50 раз меньше количества промывных вод, образующихся при регенерации песчаных и полистироловых фильтров. Производительность такой установки составляет до 600 м3/ч.
Для механической очистки сточных вод от нефтепродуктов применяются также гидроциклоны и центрифуги. Используются напорные и открытые низконапорные гидроциклоны. Первые применяются доя осаждения твердых примесей, вторые - - для удаления осаждающихся и всплывающих примесей. Эти циклоны характеризуются высокой производительностью и небольшой стоимостью. Гидроциклоны рекомендуется применять взамен песколовок или отстойников при недостатке площади для их размещения (около моечных машин для грубой очистки моющего раствора, установок наружной обмывки локомотивов, автомашин и т.п.), а также для концентрирования и отмывки от нефти осадка из отстойных сооружений. В гидроциклонах действуют центробежные силы, отбрасывающие тяжелые частицы к периферии потока. При высокой скорости вращения центробежные силы значительно больше сил тяжести. Из напорных гидроциклонов наибольшее распространение получил аппарат конической формы. Сточная вода подается внутрь гидроциклона. При вращении воды под действием центробежной силы внутри гидроциклона образуется ряд потоков. Жидкость, войдя в цилиндрическую часть, приобретает вращательное движение и движется около стенок по винтовой спирали вниз к сливу. Часть ее крупными частицами удаляется из гидроциклона. Другая, осветленная часть, поворачивает и движется вверх по оси гидроциклона. В центре образуется воздушный столб, давление которого меньше атмосферного. Он оказывает влияние на эффективность работы гидроциклонов.
Напорные гидроциклоны применяют для выделения из воды грубодисперсных минеральных примесей с плотностью 2—3 г/см3 (песка, частиц кирпича, шлака) при размерах частиц свыше 0,05—0,1 мм и гидравлической крупности 2—5 мм/с. Эффект очистки от взвешенных веществ в напорных гидроциклонах для щелочных моющих растворов составляет 40—50%, а для стоков от промывки грузовых вагонов — 30—40%. Открытые безнапорные гидроциклоны применяют для грубой очистки сточных вод от крупных примесей (более 5 мм/с) и нефтепродуктов. От напорных гидроциклонов они отличаются большей производительностью и меньшим гидравлическим сопротивлением. Эффект очистки в открытых гидроциклонах составляет 50—60%.
Для удаления осадков из сточных вод могут быть использованы фильтрующие и отстойные центрифуги. Фильтрующие центрифуги применяют для разделения суспензий, когда требуется высокая степень обезвоживания осадка и эффективная его промывка, а также в тех случаях, когда используется обезвоженный осадок и достаточно чистый фильтрат. Из отстойных центрифуг непрерывного действия в системах очистки сточных вод наибольшее распространение получили горизонтальные шнековые центрифуги типа ОГШ. Их используют для выделения частиц гидравлической крупностью примерно 0,2 мм/с (противоточные) и 0,05 мм/с (прямоточные).
2.2. Физико-химические методы
Для удаления из сточных вод тонкодисперсных взвешенных и коллоидных частиц, растворимых газов, минеральных и органических веществ используются физико-химические методы, к которым относят коагуляцию, флотацию, адсорбцию, ионный обмен, ультрафильтрацию и др.
Выбор метода зависит от технологических и санитарных требований, состава сточных вод, концентрации загрязнений, а также наличия необходимых материальных, энергетических ресурсов и экономичности процесса.
На коллоидные частицы действуют в противоположных направлениях две силы: силы тяжести и диффузии. Под действием силы тяжести они стремятся опуститься на дно, а силы диффузии распределяют частицы равномерно по всему объему системы. В результате действия этих сил в системе устанавливается равномерное распределение частиц по высоте.
Дисперсные системы могут существовать, не разрушаясь, длительное время. Различают кинетическую и агрегативную устойчивость таких систем. Способность дисперсных систем сохранять определенное распределение по объему называется кинетической устойчивостью. Грубодисперсные системы кинетически неустойчивы, их частицы оседают под действием силы тяжести. Молекулярные системы (смесь газов и растворы) обладают очень высокой кинетической устойчивостью. Кинетическая устойчивость коллоидных систем зависит от размеров частиц: чем меньше размер их частиц, тем более кинетически устойчив коллоидный раствор. Агрегативная устойчивость выражается в том, что частицы не укрупняются (не слипаются) при столкновении друг с другом. Коллоидные частицы, лишенные агрсгативной устойчивости, слипаются в более крупные агрегаты (коагулируют) и выпадают из коллоидного раствора в осадок.
В электрическом поле коллоидные растворы подвергаются изменению при приложении разности потенциалов: в них происходит движение частиц и жидкости. Эти процессы получили общее название электрокинетических явлений. Явление переноса частиц дисперсной фазы (взвешенных частиц) в электрическом поле называется электрофорезом, а движение жидкости дисперсионной среды (растворитель) также в электрическом поле — электроосмосом. Электрокинетические явления можно объяснить существованием на поверхности дисперсионной фазы двойного электрического слоя и возникновением разности потенциалов между дисперсной фазой и дисперсной средой. Если дисперсная фаза несет заряды одного знака, а жидкая среда противоположного, то под действием внешнего электрического поля эти фазы приходят в движение относительно друг друга.