Спираль Фибоначчи или “фи” и геометрические дополнения
Хотя на ранних этапах числовые серии “фи” будут образовывать между собой музыкальные отношения, по мере роста пары чисел, отношения между ними становятся все более и более одинаковыми, и процесс роста стабилизируется. По мере продолжения процесса, каждая пара чисел в серии будет делиться друг на друга и образовывать одно и то же число, а это значит, что отношение между всеми числами остается постоянным. Именно по этой причине само отношение называется “константой”, поскольку это всегда будет одно и то же число (и так до бесконечности), равное:
1,618033988749894484820….
Еще один интересный факт: мы можем начать с любых двух чисел, не смотря на их различие, и складывать их, используя простую приведенную выше формулу. Не смотря на то, какими разными они могут быть, через небольшой промежуток времени, мы снова получим отношение между ними, равное константе “фи”. Эта концепция вдохновила многие поколения математиков, музыкантов, ученых и философов, поскольку загадочно появляется под многими разными обличиями, включая пропорции роста растений, животных и человеческих существ. Как мы говорили, музыкальные отношения “фи” создают структуру простой геометрии в двух и трех измерениях, которая, как мы сейчас знаем, представляет собой форму вибрации. Это ясно показывает вышеприведенный рисунок, ибо, пока спираль продолжает расширяться, мы можем видеть шесть равнобедренных треугольников идентичных пропорций. Величина отношения между каждыми из двух треугольников будет константой “фи” или 1,618…, приведенной выше.
Спирали показывают, как простые геометрические формы могут становиться все больше и больше или все меньше и меньше.В то время как спираль разворачивается или сворачивается, то же самое делают и геометрические формы, образовывающиеся внутри нее, - увеличиваются или уменьшаются. Иными словами, если спираль расширяется вовне, треугольники становятся больше. Если спираль сжимается вовнутрь, по направлению к точке F, треугольники становятся меньше.
Именно такой принцип спирали позволяет наличие простых расширяющихся паттернов роста в Природе, чтобы выражать себя, будь то в кристаллических структурах или живых организмах. Если бы мы могли изобразить геометрию того, как более простые геометрии сферического шара Фуллера расширялись в более сложные формы, когда он повышал вибрацию, мы бы увидели, что их расширения можно точно изобразить с помощью упомянутых выше простых гармонических спиралей.
Сферическое шестиренчатое расширение тетраэдральной формы, связанное с траекториями спирали, основанными на фракталах
Вышеприведенный рисунок появился на очень большом образовании “круга на полях”, названным “Тройная Серия Юлии”. В 1996 году оно появилось буквально за одну ночь на пшеничном поле в Англии. Это модель того, как выглядит система взаимосвязанных спиралей и Платоновой геометрии, расширенная в три измерения. Сам круг на полях состоял только из трех спиралей, образующих отдельные круги. А все прямые линии, внешняя сфера и экватор добавлены для того, чтобы лучше проиллюстрировать наблюдаемое. Это модель вибрации эфира, создающей видимые планетарные энергетические напряжения и четко измеряемые структуры времени. Сейчас следует визуализировать каждый треугольник как тетраэдр, обладающий своим сферическим полем и превращающий эту геометрическую схему в “матрешку” или сферу энергии “загнездованных кукол”, которую мы видели во многих экспериментах, таких как проведенных д-ром Чернобровом.
13.6 ФОРМА И РОСТ, ПРОСТРАНСТВО И ВРЕМЯ, МУЖЧИНА И ЖЕНЩИНА
Итак, уже можно понять, почему древние рассматривали прямые и изогнутые линии как две противоположности во Вселенной, хотя на самом деле они являются единой вибрацией. Мы чувствуем, что согласно одному образу мышления, прямые линии и геометрии могут представлять собой пространство, а изогнутые линии и спирали - время. Но сейчас мы будем выражать это в более знакомых терминах и скажем, что прямые линии создают форму, а изогнутые – движение и рост этой формы. Иными словами, прямые линии формируют геометрические структуры самих вибраций, а изогнутые - пути для расширения и сжатия этих структурированных частот. Хотя обычно мы не думаем об изогнутой геометрии в связи со звуком и светом, мы знаем, что именно спирали управляют движением между одной нотой октавы и следующей более высокой нотой, или между одним цветом спектра и следующим более высоким цветом.
Попробуем выразить все вышесказанное в более духовном контексте. Во многих древних мистических традициях прямая линия считалась мужской силой и ассоциировалась с Солнцем, а изогнутая – женской силой и ассоциировалась с Луной. Мужские/женские энергии очень легко и интуитивно работают в наших умах. В состоянии покоя клетка спермы образует прямую линию, а яйцеклетка обладает круглой структурой. Тела мужчин по своему строению более тяжелые или прямолинейные, в то время как тела женщин - более плавные и округлые. Тенденция мужского ума – думать более линейно, жестко, посредством математических паттернов “левого полушария”, ум женщин более изогнутый, текучий, с эмоциональными паттернами “правого полушария”. Первобытные мужчины охотились и строили при свете Солнца, используя прямые копья и стрелы для добычи пищи, или позднее прямые доски, молотки и гвозди для строительства сооружений. Женщины готовили еду в плавных, круглых керамических или деревянных горшках, кормили детей плавной, округлой грудью в уединенной темноте пещеры, иглу или типи, укрываясь от дневного света, под которым когда-то бродили хищники и злодеи. Кроме того, женщины напрямую связаны с Луной так, как никогда не были связаны мужчины, - своим месячным циклом, демонстрируя еще один уровень, почему древние связывали женский дух с нашим Полуночным Солнцем.
13.7 САКРАЛЬНАЯ ГЕОМЕТРИЯ И ЖИЗНЬ
Учение о различных геометрических формах и спиралях, включая их духовные связи с человечеством (как частично продемонстрировано выше), известно как “сакральная геометрия”.Одноименная книга Роберта Лолора – бесспорно, самая лучшая книга по этой теме. На протяжении истории многие великие ученые детально изучали принципы сакральной геометрии. Их потрясло открытие, что все разнообразные жизненные формы на Земле демонстрировали вибрационные принципы музыки, включая взаимодействие пространства и времени – прямые и изогнутые линии. Простые ракушки являются совершенным представлением спирали Фибоначчи, то же самое относится к паттерну роста растений, отпечаткам пальцев, рогам быка, внутренней части подсолнуха или лотоса, и многим-многим различным пропорциям в структурах скелета животных и человеческих существ. Очевидно, нет ограничений тому, как далеко будут заходить эти принципы, побуждая людей математически изучать каждое растение или организм по отдельности в поисках этих связей. Поскольку ученые не дают основания верить, что такие гармонические принципы необходимы для роста жизненных форм, тогда почему они существуют? Если бы эти пропорции не были важны, тогда почему мы все время их видим? А может, мы просто игнорируем существующее вокруг нас свидетельство – свидетельство, указывающее на то, что все во Вселенной – продукт вибрации? Если фундаментальная энергия, создающая всю реальность, вибрирует в гармоническом резонансе, может ли быть так, чтобы что-то не обладало гармонической основой?
13.8 ОТНОШЕНИЯ СПИРАЛИ В ПЛАТОНОВЫХ ТЕЛАХ
Только что мы убедительно продемонстрировали, что спирали связывают воедино все Платоновы Тела. Чтобы подтвердить это положение, мы приводем таблицу из книги Сдвиг Эпох. Из книги Роберта Лолора Сакральная геометрия мы узнаем, что индусы сводили геометрии Платоновых Тел в структуру октавы, которую мы видим для звука и света. Нижеприведенная таблица перечисляет геометрию в определенном порядке. Это дает полную и законченную картину, как работают вместе различные вибрации, которые мы увидим в следующей главе. Сейчас достаточно знать, что такая таблица существует. Она основана на присвоении ребрам куба длины, равной “1”. Затем мы сравниваем с этой величиной ребра всех других форм, больше они или меньше. Мы помним, что в Платоновых Телах каждая грань имеет одинаковую форму, каждый угол идентичен, каждый узел находится на одинаковом расстоянии от всех других узлов, и каждая линия имеет одинаковую длину.
1 | Сфера | (нет граней) |
2 | Центральный икосаэдр | 1/фи2 |
3 | Октаэдр | 1/√2 |
4 | Звездный тетраэдр | √2 |
5 | Куб | 1 |
6 | Додекаэдр | 1/фи |
7 | Икосаэдр | фи |
8 | Сфера | (нет граней) |
Гармонические пропорции Платоновых Тел
В следующей главе мы приведем бесспорный пример того, что древние индусы знали все и даже больше об энергетических полях, которые мы обсуждали. Нам повезло обнаружить редкую книгу Рамы Прасада, изданную в 1894 году и озаглавленную Тончайшие силы природы: Наука дыхания и философия таттв[44]. Мы увидим, что значение слова “таттва” аналогично значению нашего слова “вибрация”. Количество соответствий между тем, что мы уже наблюдали, и данными книги Прасада воистину потрясает, ибо почти каждый ключевой аспект эфирной модели, которую мы описали, содержится на страницах этой книги в той или иной форме. Также, мы посмотрим, как древняя эфирная концепция “октавы” измерений соотносится с современными научными учениями, и покажем, что примирить два мнения легче, чем мы думали. Кроме того, посредством осознания того, как геометрия пересекается с более высокими измерениями, что мы уже наблюдали на планетах, мы поймем, что идея “гиперпространственной физики” переходит из сферы умозаключений в область прикладной науки. И научившись применять эти концепции, мы откроем дверь во Вселенную.