Смекни!
smekni.com

по курсу «Электроника» на тему: «Многорезонаторный клистрон» (стр. 1 из 6)

Московский авиационный институт

(государственный технический университет)

Факультет №4

Кафедра 405

Реферат

по курсу «Электроника»

на тему: «Многорезонаторный клистрон»

Выполнил ст. группы 04-207:

Андреев Д.В.

Принял:

Рыбин Ю.М.

Москва

2010 г.

Содержание.

1. Введение……………………………………………………………………..3

2. Пролетные клистроны. Анализ процессов в пролетном клистроне…….5

3. Принцип работы многорезонаторного пролетного клистрона……..19

4. Параметры и характеристики многорезонаторного клистрона…….21

5. Список используемой литературы…………………………………...24

1.Введение.

Элементная база радиоэлектронной аппаратуры в сверхвысокочастотном (СВЧ) и оптическом диапазонах включает в себя электровакуумные, полупроводниковые и квантовые приборы.

Обычные электронные сеточные лампы, полупроводниковые диоды и транзисторы плохо работают в диапазоне сверхвысоких частот, где время пролета электронов сравнимо с периодом колебаний, а также сильно влияние приборных емкостей и индуктивностей. Поэтому создатели приборов шли по пути, как изменение конструкций старых приборов, так и построения принципиально новых приборов, не имеющих себе подобных в низкочастотном диапазоне.

Современные СВЧ электровакуумные приборы в основном могут быть разделены на две большие группы: приборы О и М типов с резонансными (клистрон, магнетрон) и нерезонансными (лампы бегущей и обратной волны) колебательными системами. Среди полупроводниковых приборов в СВЧ диапазоне используют как обычные диоды и транзисторы с видоизмененными конструкциями, так и сравнительно новые приборы – лавинно-пролетный диод и диод Ганна.

Квантовые приборы работают как в СВЧ диапазоне (сверхчувствительные квантовые парамагнитные усилители и квантовые генераторы, используемые в качестве стандартов частоты), так и в оптическом диапазоне (различные типы лазеров).

Клистрон [от греч. klýzo - ударять, окатывать (волной) и (элек) трон], электровакуумный прибор СВЧ, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от поля СВЧ. Распространены 2 класса клистрон - пролётные и отражательные.
Пролётный клистрон - клистрон, в котором электроны последовательно пролетают сквозь зазоры объёмных резонаторов (ОР). В зазоре входного ОР происходит модуляция скоростей электронов: электрическое поле в нем периодически полпериода ускоряет, а следующие полпериода замедляет движение электронов. В пространстве дрейфа ускоренные электроны догоняют замедленные, в результате чего образуются сгустки электронов. Проходя сквозь зазор выходного ОР, сгустки электронов взаимодействуют с его электрическим полем СВЧ, большинство электронов тормозится и часть их кинетической энергии преобразуется в энергию колебаний СВЧ.
Идея преобразования постоянного потока электронов в поток переменной плотности за счёт того, что ускоренные электроны догоняют замедленные, рассматривалась советским физиком Д. А. Рожанским в 1932, метод получения мощных колебаний СВЧ, основанный на этой идее, был предложен совместно советским физиком А. Н. Арсеньевой и немецким физиком О. Хайлем в 1935, первые конструкции пролётных Клистрон были предложены и осуществлены в 1938 американскими физиками В. Ханом, Г. Меткалфом и независимо от них Р. Варианом и З. Варианом.
Большинство пролётных клистронов являются многорезонаторными усилительными клистронами. Промежуточные ОР, расположенные между входным и выходным ОР, дают возможность расширить полосу пропускания частот, повысить кпд и коэффициент усиления. Усилительные клистроны выпускаются для работы в узких участках частот дециметрового и сантиметрового диапазонов волн с выходной мощностью от нескольких сотен Вт до 40 МВт в импульсном и от нескольких Вт до 1 МВт в непрерывном режиме работы. Коэффициент усиления клистрона обычно от 35 до 60 Дб, кпд от 40 до 60%, полоса пропускания менее 1% в непрерывном режиме и до 10% в импульсном режиме. Основные области их применения: доплеровская радиолокация, связь с искусственными спутниками Земли, радиоастрономия, телевидение (клистрон непрерывного режима работы) и линейные ускорители элементарных частиц, оконечные усилители мощности радиолокационных станций дальнего действия и высокой разрешающей способности (клистрон импульсного режима работы).
Небольшую часть выпускаемых промышленностью пролётных клистронов составляют генераторные клистроны непрерывного режима работы. Обычно они имеют 2 ОР. Небольшая доля мощности колебаний СВЧ, создаваемых во втором ОР, передаётся через щель связи в первый ОР для модуляции скоростей электронов. Их выходная мощность примерно от 1 до10 Вт, кпд - менее 10%. Генераторные клистроны применяются главным образом в параметрических усилителях, радиомаяках сантиметрового и миллиметрового диапазонов волн.
Отражательный клистрон - клистрон, в котором поток электронов, пройдя зазор ОР, попадает в тормозящее поле отражателя, отбрасывается этим полем назад и вторично проходит зазор ОР в обратном направлении. При первом прохождении зазора его электрическое поле СВЧ модулирует скорости электронов. При втором прохождении (в обратном направлении) электроны прибывают в зазор сформированными в сгустки; поле СВЧ в зазоре тормозит эти сгустки и превращает часть кинетической энергии электронов в энергию колебаний СВЧ. Сгустки электронов образуются в результате того, что ускоренные электроны в пространстве между ОР и отражателем проходят более длинный путь и находятся дольше, чем замедленные. При изменении отрицательного напряжения на отражателе меняются время пролёта электронов, фаза прибытия сгустков в зазор и частота генерируемых колебаний. Последнее используется для так называемой электронной настройки, позволяющей практически безынерционно и без затраты мощности управлять частотой генерируемых колебаний при частотной модуляции и автоматической подстройке частоты. Механическая перестройка частоты производится изменением зазора путём прогиба торцевой стенки (мембраны) металлического корпуса клистрон или посредством перемещения настраивающего поршня съёмной части ОР, присоединяемой к краям металлических дисков, выходящим из стеклянного или керамического корпуса клистрона.



Многорезонаторный клистрон, используемый в накопительном кольце Австралийского синхротрона (ускоритель заряженных частиц с синхротронным излучением 3 ГэВ) для поддержания энергии электронного пучка, в Мельбурне.

2.Пролетные клистроны.

Пролетные клистроны — это разновидность приборов с кратковременным взаимодействием электронов с высокочастотным электрическим полем. В зависимости от назначения пролетные клистроны подразделяют на усилительные, умножительные и генераторные. Пролетные клистроны классифицируются также по числу резонаторов. Рассмотрение начнем с двухрезонаторных пролетных усилительных клистронов, а затем перейдем к многорезонаторным клистронам, получившим наибольшее распространение.

Клистрон пролетный усилительный импульсного действия КИУ-75 А,В

Анализ процессов в пролетном клистроне.

Модуляция электронного потока по скорости.

Определим сначала скорость электронов v0 перед входным резонатором. Изменение кинетической энергии электронов в ускоряющем поле между катодом и входным резонатором равно изменению потенциальной энергии eU0. Считая начальную скорость

равной нулю, получим

где т, е— масса и заряд электрона.

Скорость любого электрона после прохождения зазора между сетками резонатора может быть найдена в результате решения уравнения движения

где Е—напряженность переменного электрического поля между сетками С'1 и C''1 ,

равная

, если U1амплитудное значение разности потенциалов, a d1

― расстояние между сетками. Индекс 1 относится к первому (входному) резонатору. Тогда уравнение (2.2) принимает вид

Пусть электрон влетает в пространство между сетками в момент времени t' и находится там время τ0

(время пролета). Тогда момент времени вылета из резонатора t"=t'+ τ1. Таким образом, граничные условия для решения дифференциального уравнения (2.3) следующие: t=t', v=v0; t=t", v = v1. Решение уравнения (2.3) при этих граничных условиях имеет

вид

Предположим, что амплитуда переменного напряжения много меньше ускоряющего

напряжения U0, которое определяет начальную скорость v0

Тогда изменение скорости электронов в резонаторе невелико, т. е. Значения v1 для