Статическая характеристика электромагнитных ИМ, как правило, нелинейная, и их используют в системах позиционного регулирования.
Электромагнитные муфты могут быть фрикционными, порошковыми или асинхронными. Фрикционная муфта состоит из двух полумуфт, посаженных на ведущий и ведомый валы. В одной из полумуфт расположена обмотка возбуждения. При подаче на нее напряжения полумуфты сдвигаются и возникающая сила трения приводит их в движение. Такие муфты также применяют в системах позиционного регулирования и защиты оборудования при аварийных нарушениях его работы.
Принцип действия порошковой муфты основан на изменении вязкости ферромагнитной массы, заполняющей муфту. При подаче на катушку напряжения вязкость ферромагнитной массы возрастает и передаваемый момент увеличивается.
В муфтах скольжения момент вращения передается посредством магнитного поля, создаваемого обмоткой, расположенной на ведущей полумуфте. При ее вращении в ведомой полумуфте, как в роторе асинхронного двигателя, индуцируется ток, от взаимодействия которого с магнитным полем возникает момент вращения, увлекающий ведомую полумуфту за ведущей.
Порошковые и асинхронные электромагнитные муфты могут быть использованы и в системах непрерывного регулирования. В этом случае их характеризует ПФ инерционного звена с постоянной времени 0,03...0,25 с (для порошковых) и 0,11...0,45 с (для асинхронных муфт).
Устройство, позволяющее изменять направление или расход потока вещества или энергии в соответствии с требованиями ТП, называют регулирующим органом (РО).
Работоспособность РО определяется его характеристиками: диапазоном регулирования и рабочей расходной характеристикой.
Отношение максимального расхода среды Gmax к минимальному Gmin, соответствующему перемещению РО из одного крайнего положения hmin в другое hmax, называют диапазоном регулирования
R = Gmax /Gmin
Зависимость расхода среды от положения РО h называют рабочей расходной характеристикой
G = f (h).
При разработке, выборе и наладке РО для обеспечения возможности эффективного управления ТП в широком диапазоне нагрузок и при разных режимах следует обеспечить достаточный диапазон регулирования и линейную рабочую характеристику в пределах этого диапазона. Используемые в сельскохозяйственном производстве РО можно разделить на три группы.
Регулирующие органы объемного типа (рис. 4.6, а). Они изменяют расход среды за счет изменения ее объема (например, ленточные питатели-дозаторы компонентов
Рис. 2. Регулирующие органы:
а — ленточный питатель (объемный); б — вибрационный питатель; в — ленточный питатель
(скоростной); г — тарельчатый питатель; д — шнековый питатель; е — секторный питатель-
ж — тарельчатый клапан; з — золотниковый клапан; и — поворотная заслонка
кормовых смесей). Материал на ленту поступает непосредственно из бункера через воронку в его нижней части. На фронтальной грани воронки в вертикальных направляющих перемещается заслонка, посредством которой осуществляется регулирование производительности питателя.
Для исключения заклинивания ленты высота щели h между заслонкой и лентой должна быть не менее (2,5...3)г/тах, где dmax — максимально возможный размер частиц материала.
Регулирующие органы скоростного типа. Они изменяют производительность РО за счет изменения его частоты вращения. К РО этого типа относят устройства для регулирования частоты вращения вытяжных вентиляторов систем вентиляции животноводческих помещений, шнековых питателей-дозаторов и т. д.
В связи с большим разнообразием физико-химических свойств дозируемых компонентов кормов, других сыпучих материалов и условий, в которых работают эти РО, известно большое число конструкций их рабочих органов. Эти органы, как правило, состоят из активных элементов, обеспечивающих перемещение дозируемого материала, ограничивающих элементов, формирующих поток, и вспомогательных элементов.
Рациональный выбор рабочего органа и его конструктивное оформление в значительной степени обеспечивают надежность устройства и точность дозирования.
Вибрационные питатели (рис. 2, б) предназначены для подачи из бункера, не имеющего дна, мелко- и крупнокусковых материалов. Подачу материала регулируют изменением амплитуды выпрямленного напряжения, подводимого к электромагнитам питателя. Электромагниты, жестко связанные с корпусом лотка, заставляют его вибрировать с определенной частотой. Материал вследствие небольшого наклона лотка перемещается к его концу со скоростью, зависящей от амплитуды питающего напряжения. Достоинства вибрационных питателей — отсутствие вращающихся частей, плавное и практически безынерционное регулирование производительности.
Ленточные питатели (рис. 2, в) предназначены для выдачи сыпучих материалов с различными размерами фракций. Производительность питателя зависит от размеров фракций материала и скорости перемещения ленты v. Последнюю можно изменять с помощью частоты вращения электропривода или бесступенчатого вариатора, управляемого ИМ.
Тарельчатые питатели (рис. 2, г) предназначены для подачи из бункеров преимущественно мелкозернистых и мелкокусковых материалов. Тарельчатый питатель представляет собой круглый плоский диск (тарель), устанавливаемый под бункером и вращаемый специальным приводом желательно с возможностью регулирования частоты вращения п.
Между бункером и тарелью устанавливают манжеты и нож, с помощью которых осуществляется регулирование сечения потока материала. Более точное регулирование осуществляют поворотом ножа или изменением частоты вращения тарели. Производительность питателя зависит от изменения физических свойств материала, высыпающегося на тарель.
Шнековые питатели (рис. 2, д) более всего пригодны для выдачи мелкозернистых и мелкодисперсных материалов.
Производительность шнекового питателя пропорциональна квадрату диаметра рабочего винта D, шагу S и частоте его вращения п.
Секторные питатели (рис. 2, е) предназначены для выдачи мелкозернистых материалов. Основа конструкции секторного питателя — вращающийся барабан, разделенный радиальными перегородками на несколько секторов.
В частном случае (барабанный питатель) сектор может быть и один. Секторный питатель устанавливают под бункером. Материал выдается за счет поочередного заполнения и опорожнения секторов в процессе вращения ротора. Производительность регулируют, изменяя частоту n вращения рабочего органа.
Недостатком питателя является зависимость степени заполнения секторов от числа оборотов п вращения ротора.
Регулирующие органы дроссельного типа. Они изменяют расход вещества за счет изменения скорости и площади сечения потока жидкости или газа при прохождении его через дросселирующее устройство, гидравлическое сопротивление которого — переменная величина. Регулирующие клапаны (рис. 2, ж и з) отличаются формами плунжера 1 и седла 2.
Каждая конструкция характеризуется прежде всего зависимостью площади проходного сечения F клапана от положения плунжера.
Для тарельчатого клапана, показанного на рисунке 4.6, ж, эту характеристику называют конструктивной и рассчитывают по формуле (hmax = 0,25D)
где D — диаметр отверстия, м.
Для золотникового клапана (рис. 4.6, з) с прямоугольным сечением окон
где n — число окон; b и h — ширина и высота окна, м.
Поворотные заслонки (рис. 4.6, и) круглой или прямоугольной формы предназначены в основном для регулирования расхода газообразных сред при малых перепадах давления на регулирующем органе.
Зависимость площади проходного сечения от угла поворота заслонки имеет вид
где Dy — диаметр условного прохода круглой или равной ей по площади прямоугольной заслонки, численно равный внутреннему диаметру круглой заслонки, м; φ — угол поворота заслонки, изменяющийся от 0 до φmax.
Работоспособность системы автоматического управления в значительной мере зависит от правильности выбора регулирующего органа. Выбирают конкретный РО по данным справочников или каталогов в соответствии с наибольшим значением пропускной способности.
3. АНАЛОГОВЫЕ ЭЛЕКТРОПНЕВМАТИЧЕСКИЕ И ПНЕВМОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ
Электропневматический преобразователь типаЭПП-63.
Преобразователь ЭПП-63 предназначен для преобразования сигнала постоянного тока 0—5 мА в пропорциональный унифицированный пневматический сигнал 0,2— 1 кгс/см2. Принципиальная схема прибора приведена на рис. 3
При установившемся режиме постоянный ток, проходя по катушке 1, укрепленной на основном рычаге 5, создает усилие втягивания катушки в зазор постоянного магнита 2, которое уравновешивается на рычажной системе при определенном давлении в сильфоие обратной связи 6.
При изменении тока нарушается равновесие рычажной системы и рычаги 5 и 7, соединенные гибкой тягой 8, поворачиваются вокруг шарниров, изменяя зазор между соплом 3 и укрепленной на основном рычаге заслонкой 4. Это вызывает изменение давления в междроссельной
камере А, вследствие чего нарушается равновесие дифференциальной мембраны 9, и шток, жестко связанный с мембраной, изменяет степень открытия клапана 11. При этом начинает изменяться давление в камере выхода Б и в сильфоне обратной связи. Равновесие рычажной системы восстановится при определенном соотношении между выходным давлением и входным током при новом соотношении давлений в выходной и междроссельной камерах, что соответствует новым значениям перепадов давлений на постоянных дросселях 10 и 12.