Смекни!
smekni.com

А. В. Воронин (стр. 13 из 29)

Рис. 2.26. Построение структурной схемы

многомассовой механической системы с упругими связями

Для того, чтобы сразу получить удобную форму структурной схемы, можно предварительно проанализировать прямой путь прохождения сигнала в графе с расставленными причинными отношениями. Этот путь полностью задается направлениями причинности в узлах графа. Так, начинаясь с входного усилия в связи с номером 1, прямой путь может продолжиться только вдоль связи с номером 2, так как в связи 3 направление причинности противоположно. В 3–ю связь прямой путь может прийти только из второй связи после его прохождения через инерционность. Таким образом, прямой путь прохождения сигнала в структурной схеме выглядит довольно извилистым в графе связей. После построения прямого пути в структурной схеме системы (рис. 2.26,с) остается только замкнуть обратные связи.

2.10. Применение правила циклов к графу связей

Правило циклов [24] позволяет для направленного графа или струк-турной схемы записать передаточную функцию между любыми ее входами и выходами. В соответствии с этим правилом передаточная функция графа определяется как

, (2.34)

где

– определитель графа;
– передаточная функция
-го пути между заданными входом и выходом;
– определитель сокращенного графа, образующегося в результате исключения пути с передаточной функцией
и вершин, через которые этот путь проходит, из исходного графа.

Определитель графа может быть записан следующим образом:

, (2.35)

где

-е произведение передаточных функций циклов для
циклов графа, взятых из множества независимых циклов. Сумма берется по всевозможным таким комбинациям.

Поясним некоторые из используемых терминов. Циклом называется замкнутый контур в графе или структурной схеме. Передаточная функция цикла определяется как произведение передаточных функций всех звеньев, входящих в цикл.

Независимыми называются циклы, не касающиеся друг друга, то есть не имеющие в структурной схеме общих точек.

В формуле (2.35) –

функция
-го контура,
– произведение передаточных функций двух не касающихся друг друга контуров,
– произведение передаточных функций трех взаимно не касающихся контуров и т.д.

Например, в структур­ной схеме двигателя постоянного тока, приведенной на рис. 2.27, есть два цикла

и
с передаточными функциями

Циклы касаются друг друга, так как имеют общий участок, вклю-чающий сумматор и звено с передаточной функцией

, поэтому определитель

.

Рис. 2.27. Применение правила циклов к структурной схеме

Прямой путь от входного воздействия

к выходной величине
проходит через элементы с передаточными функциями
. Соответственно, передаточная функция этого пути равна

.

Этот путь касается обоих циклов, поэтому сокращенный граф циклов не имеет. Тогда

, а передаточная функция двигателя определится как

.

Путь от возмущающего момента нагрузки

определяется выражением

.

Этот путь не касается цикла

, поэтому определитель сокращен-ного графа

,

а передаточная функция двигателя по возмущению

.

Вся информация, необходимая для расчета передаточной функ-ции, есть, очевидно, и в графе связей, так как из него можно получить структурную схему, к тому же в различных вариантах. Рис. 2.28,а иллюстрирует поиск пути

и циклов
и
в графе связей рассмот-ренной выше модели двигателя.

Путь в ГС проходит вдоль связей, не меняющих направления причин­ности в узлах графа. Изменение причинности (то есть изменение усилия на поток и обратно) может происходить только в односвязных элементах (

) и в гираторе.

Рис. 2.28. Пути и циклы в графе связей

Циклы в ГС, как это показано на рис. 1.28,с, образуются цепочками связей, сохраняющими направление причинности и заканчивающимися на обоих концах односвязными элементами

. Отметим, что источники энергии в циклы входить не могут. Как это показано на рис. 2.29 , цикл может включать последовательность 0-узлов и 1-узлов (рис. 2.29,а), трансформаторы (рис. 2.29,b) и гираторы (рис. 2.29,с). Передаточные функции циклов на рис. 2.29,a,b,c имеют вид, соответственно:

Коэффициенты передачи трансфор­маторов и гираторов входят в пере­даточную функцию цикла в квадрате, поскольку цикл проходит через них дважды: один раз в прямом направ­лении, другой раз – в обратном.

Циклы, образуемые цепочками связей, называются плоскими циклами.

Рис. 2.29. Примеры плоских циклов

Рассмотрим решение задачи расчета передаточной функции механизма с редуктором, граф которого приведен на рис. 2.30.

Рис. 2.30 Циклы в графе связей

Передаточная функция единственного прямого пути

, проходя-щего последовательно через инерционность
, трансформатор
, емкость
и инерционность
определяется произведением переда-точных коэффициен­тов перечисленных элементов

Граф содержит 5 циклов, отмеченных штриховыми линиями в графе. Передаточные функции циклов

Для того, чтобы найти все пары, тройки и т.д. не касающихся циклов, удобно построить вспомогательный граф (рис. 2.30,b), в котором каждая вершина соответствует одному из циклов, а дуга между вершинами проводится, если циклы не касаются.

Каждая дуга в этом графе соответствует паре не касающихся циклов. Таких пар пять:

.

Вспомогательный граф наглядно показывает также тройку незави-симых циклов

, которая образует в треугольник. Четверок независимых циклов, которые образовали бы четырехугольник, здесь нет. Таким образом, определитель графа связей можно записать как