Смекни!
smekni.com

А. В. Воронин (стр. 20 из 29)

Для метода Эйлера формула Рунге дает

, для метода Рунге-Кутты 4-го порядка
.

Величина погрешности аппроксимации на каждом шаге

не должна превышать допускаемой погрешности
. Обычно полагают, что она составляет от 0,01 до 0,001 от текущего значения определяемой фазовой координаты
.

При автоматическом выборе шага наиболее популярным является алгоритм «трех зон» [29]:

где

– коэффициент изменения шага, обычно равный 2, позволяет дискретно менять шаг в процессе интегрирования. Другим вариантом является алгоритм плавного изменения шага интегрирования

,

где

- порядок метода интегрирования.

3.2.7. Особенности численного интегрирования мехатронных систем

Обширный набор методов численного интегрирования, которым обладают современные пакеты моделирования, позволяет эффективно решать самые различные задачи исследования мехатронных систем, но при этом возникает проблема выбора наиболее подходящего метода и правильного задания его параметров. Очень часто пользователь задает только интервал интегрирования и не обращает внимания на другие опции решателя. При решении простых задач с умеренной точностью такой подход вполне допустим, однако при решении сложных задач неудачный выбор метода либо неправильное задание его параметров может привести к неоправданно большим затратам машинного времени либо, вообще, к невозможности получить правильное решение.

Таким образом, для профессиональной работы с любым моделирующим программным обеспечением пользователь должен обладать некоторыми знаниями о реализованных в нем численных методах и применимости их к требуемому кругу задач.

Практика показала, что наличие в мехатронных системах объектов различной физической природы приводит к тому, что процессы в них характеризуются разнотемповостью, т.е. наличием быстрых и медленных составляющих движения. Кроме того, возможно одновременное присутствие как монотонных, так и медленно затухающих гармонических составляющих. Свойство системы содержать в своем переходном процессе существенно различные по своим спектральным характеристикам составляющие принято называть жесткостью [27].

Примером жесткой системы может служить робототехническая система, в которой быстрые составляющие связаны с включением тормозных устройств и демпферов, взятием или освобождением груза.

Жесткость часто является следствием избыточности модели, связанной с введением в нее малозначащих составляющих. Однако, на этапе предварительных исследований такой избыточности трудно избежать. С другой стороны, часто жесткость имеет принципиальный характер и не учет быстрых движений может привести к неадекватности модели.

Жесткие системы требуют особого подхода к процедуре численного интегрирования, так как наличие быстрых и медленных составляющих в спектре движений предъявляет совершенно разные требования к методам интегрирования. Необходимо уметь оценивать характеристики жесткости и использовать эти оценки для выбора или настройки процедуры интегрирования.

Пусть исследуемая система

является линейной и может быть описана матричными уравнениями состояния

.

Матрица

называется матрицей состояния или матрицей Якоби. Собственные значения
матрицы
определяют устойчивость и характер переходных процессов в исследуемой системе.

Составляющие движения (обычно называемые модами), связанные с собственными значениями

, лежащими в левой полуплоскости далеко от мнимой оси, соответствуют быстро протекающим и, обычно, быстро затухающим процессам в системе. Собственные значения малые по модулю, лежащие близко к мнимой оси, определяют основное движение системы.

Исходя из распределения собственных значений матрицы Якоби на комплексной плоскости можно назвать жесткой системой ОДУ такую систему, у которой матрица Якоби имеет различающиеся на несколько порядков максимальное и минимальное по модулю собственные значения.

Оценкой жесткости системы ОДУ обычно считается число обусловленности матрицы Якоби

, где
- норма матрицы
.

Для целей управления процессом моделирования под числом обусловленности чаще понимают отношение модулей максимального и минимального собственных значений матрицы

.

К жестким относят системы ОДУ у которых

. Их также называют плохо обусловленными, хотя, чаще, этот термин относится к системам алгебраических уравнений.

Для нелинейной системы матрицу Якоби можно определить после ее линеаризации в рабочей точке, как это описано в разделе 3.2.2.

Элементами матрицы Якоби являются частные производные от нелинейной вектор функции

по переменным состояния системы
. Для нелинейных систем жесткость, в общем случае, не является постоянной величиной и меняется в процессе интегрирования.

При умеренных значениях числа обусловленности

(нежесткие задачи) интегрирование обычно выполняется традиционными явными методами и требует небольших вычислительных затрат. Трудности возникают при больших значениях
, когда для получения правильного решения бывает необходимо выбирать очень малый шаг интегрирования.

При моделировании такой системы в начальный момент времени инициируются все, или большинство мод, как быстрых так и медленных. Однако через некоторое время быстрые моды затухают и решение сходится к медленному движению.

Исследователя могут интересовать и быстрые и медленные составляющие движения. В этом случае, целесообразно использование явных методов в сочетании с эффективной процедурой изменения величины шага интегрирования в зависимости от состояния моделируемой системы. Это позволит достаточно точно смоделировать быстрые движения и избежать чрезмерных затрат машинного времени, так как явные методы требуют минимальных временных затрат на каждый шаг интегрирования.

Если исследователя мало интересуют быстро затухающие движения, но отбросить их на этапе формирования модели у него нет достаточных оснований, предпочтительными являются неявные методы, которые в сумме способны дать меньшее время интегрирования при удовлетворительном качестве. Такие методы подавляют все составляющие решения, соответствующие большим по модулю собственным значениям (если только шаг не выбран очень малым).

Изложенные рекомендации по выбору методов интегрирования жестких систем предполагают, что исследователь хорошо знаком с особенностями объекта. Например, если речь идет о проектировании или оптимизации системы управления некоторого хорошо изученного объекта, то выбор метода интегрирования может быть проведен путем сравнения нескольких вариантов. Если же объект недостаточно исследован, то эффективными могут оказаться процедуры, обладающие элементами адаптации к особенностям объекта.

Некоторые современные моделирующие программные комплексы содержат наборы методов, расчетные формулы которых настраиваются на решаемую задачу, используя для этого оценки некоторых параметров, обычно, собственных значений якобиана. Особенно перспективными считаются явные адаптивные методы, не требующие при своей реализации вычисления матрицы Якоби и решения алгебраических уравнений [27]. Такие методы есть, в частности, среди решателей ОДУ программного комплекса «МВТУ».

3.3. Моделирование гибридных (событийно-управляемых) мехатронных систем

Мехатронные системы, по определению, относятся к сложным техническим системам. Одной из особенностей этих систем является то, что поведение многих из них определяется событиями, происходящими как внутри этих систем, так и в окружающей среде. Соответственно, они обладают как непрерывной, так и дискретной динамикой, находящимися в сложном взаимодействии. Подобные системы часто называют гибридными система­ми [20,21]. В отечественной литературе также ис­пользуются синонимы — непрерывно-диск­ретные, системы с переменной структурой, реактивные, событийно-управляемые.