Смекни!
smekni.com

А. В. Воронин (стр. 25 из 29)


глава 5

пакеты визуального моделирования мехатронных систем

На сегодняшний день на рынке существует множество инструментальных средств для автоматизированного моделирования технических, в частности, мехатронных систем. Некоторые из них хорошо известны российскому пользователю и пользуются популярностью, другие появились совсем недавно. Часть пакетов являются универсальными и могут использоваться для моделирования любых технических, и не только технических, систем. Другие имеют узкую специализацию в какой-либо предметной области. Возможности многих пакетов в значительной степени перекрываются и подходы к решению одних и тех же задач у них примерно одинаковы.

Поскольку освоение даже одного серьезного пакета связано со значительными затратами времени, сил и денег, правильный выбор инструмента в значительной степени определит успешность исследований.

Проведем классификацию инструментальных средств, которые могут быть в той или иной мере использоваться для моделирования мехатронных систем, опираясь на такие важнейшие показатели как назначение и возможности пакета, состав библиотек и принципы построение моделей, методы интегрирования и средства визуализации результатов.

5.1. Классификация пакетов моделирования технических систем

Структура современных инструментальных средств (пакетов) для моделирования технических систем представлена на рис. 5.1.

Под специализированными пакетами понимаются программные средства, которые долгое время создавались и развивались на конкретных предприятиях и отраслях и были ориентированы на специфические понятия конкретной прикладной области (механики, теплотехники, электроники и т.д.). Написанные на языках Fortran, Си и т.п., эти пакеты уходят в прошлое, заменяясь предметно-ориентированными компонентными пакетами. Связано это с тем, что специализированные пакеты требуют тесного сотрудничества программиста и специалиста в предметной области, а лучше, хорошего владения специалистом искусством программирования. Переход к компонентным пакетам позволяет разорвать эту связь. Кроме того, специализированные пакеты с трудом поддаются модернизации, в них сложно использовать современные программы визуализации и обработки результатов экспериментов и т.п.

Рис. 5.1. Классификация пакетов моделирования мехатронных систем

Математические пакеты, такие как Mathcad, Maple, Mathematica, хорошо приспособлены к проведе­нию расчетов в есте­ственнонаучных дисциплинах, когда модель задана в аналитической форме. Удобство варьирования параметров в сочетании с заранее определенной процедурой обработки и визуализации результатов существенно облегчает исследования. В таких многовариантных рас­четах накладные расходы, связанные с напи­санием специальной программы на языке па­кета, управляющей экспери­ментом, окупаются той легкостью, с которой возможно повторить все вычисления заново при внесе­нии изменений в исходную модель. Программирование сводится к написанию относительно небольших по объему программ, состоя­щих в основном из макро­операторов.

С точки зрения моделирования мехатронных объектов основным и, пожалуй, единственным достоинством систем компьютерной математики является математическая прозрачность вычислений и легкость создания объектов, осуществляющих математические вычисления. К числу недостатков можно отнести отсутствие таких принципиально важных возможностей, как:

- автоматизация построения математической модели;

- компонентное моделирование с применением достаточно большого количества типовых блоков;

- быстрая модификация модели;

- создание предметно-ориентированной среды;

- оперативное изменение метода моделирования и т.д.

В результате, применение систем компьютерной математики ограничивается решением простых задач, или задач, где главное – прозрачность вычислений.

Пакеты компонентного моделирования в основном ориентированы на численные эксперименты и являются в настоящее время доминирующими в процессах проектирования технических объектов. Они позволяют пользователю не заботиться о программной реализации модели, как о последовательности исполняемых операторов, и тем самым создают на компьютере некоторую удобную среду, в которой можно создавать виртуальные системы и проводить эксперименты с ними.

Пакеты компонентного моделирования, по способам их применения или технологии моделирования можно разделить на две группы.

Так называемые универсальные пакеты, ориентированы на определенный класс математических моделей и применимы для любой прикладной области, в которой эти модели справедливы. Основу универсального пакета составляют библиотеки компонентов общего назначения. В этих пакетах используются разнообразные коллекции численных методов, способные справиться с широ­ким спектром задач. Как правило, универсальные пакеты обладают развитыми средствами визуализации, обеспечивающими показ изучаемого явления с разных сторон, а не одним, принятым в конкретной области, способом.

Предметно-ориентированные пакеты предназначен­ы для решения промышленных и на­учно-исследовательских задач в конкретной предметной области. Библиотеки моделей компонентов таких пакетов содержат хорошо изученные и отлаженные мо­дели из довольно узкой предметной области, которые лишь накапливаются, модифицируются и при­спосабливаются для решения конкретных за­дач. В результате, накопленная база моделей со временем приобретает большую ценность. Спектр методов решения задач проектирования также ограничен известными и хорошо отработанными инструментами, возможно, ориенти­рованными на узкий класс задач, в эффективности и надежности которых у пользователей нет сомнений. Как правило, предметно-ориентированные пакеты требуют серьезных усилий для их освоения, а также знаний в конкретной предметной области. Стоимость этих пакетов достаточ­но высока, что обычно заставляет пользова­теля использовать какой-либо один пакет в течение длительного времени, всячески расширяя его возможности.

Следует заметить, что между универсальными и предметно-ориентированными пакетами нет четкой границы. Часто разница лишь количественная. Добавление к универсальному пакету соответствующего набора специализированных модулей, прежде всего библиотек моделей компонентов, превращает этот пакет в предметно-ориентированную среду моделирования. Примером подобного подхода может служить появление предметных расширений пакета Simulink – SimPower, SimMechanic и т.п. Учитывая открытость системы, каждый пользователь может добавить к готовым моделям то, что ему нужно, создав собственную предметно-ориентированную среду.

По принципам представления исходной модели среди пакетов компонентного моделирования можно выделить две основные группы:

1) пакеты структурного (или блочного) моделирования;

2) пакеты физического мультидоменного моделирования.

Элементарные блоки пакетов структурного моделирования обладают направленным действием, последующий блок не влияет на предыдущий. К достоинствами этого подхода следует отнести, прежде всего, простоту создания не очень сложных моделей даже не слишком подготовленным пользователем. Другим достоинством является эффективность реализации элементарных блоков и простота построения эквивалентной системы. В то же время при создании сложных моделей приходится строить довольно громоздкие многоуровневые блок-схемы, не отражающие естественной структуры моделируемой системы. Наиболее известными представителями пакетов визуального «структурного моделирования» являются: MATLAB/Simulink, EASY5, VisSim, AnyLogiс.

Пакеты физического мультидоменного моделирования позволяют использовать как ориентированные, так и неориентированные компоненты и связи. Подход очень удобен и естественен для описания типовых блоков физических систем. К пакетам "физического моделирования" можно отнести: Multisim, DYNAST, 20-SIM; Dymola.

Некоторые авторы выделяют в качестве третьей группы пакеты, предназначенные для моделирования гибридных систем [19]. Эти пакеты позволяют очень наглядно и естественно описывать мехатронные системы со сложной логикой переключений. К этому направлению относится пакет Shift, а также отечественный пакет Model Vision Studium [21] .

5.2. Пакеты структурного моделирования

Рассмотрим очень коротко возможности и особенности некоторых универсальных и достаточно распространенных пакетов визуального моделирования, которые могут быть использованы для моделирования мехатронных систем.

К числу универсальных, не ориентированных на конкрет­ные прикладные области пакетов для моделирования технических систем можно отнес­ти пакет MATLAB/Simulink, а также построенные по его образу и подобию пакеты VisSim, МВТУ.

Данные пакеты предназначены для модели­рования и исследования динамических сис­тем в широком понимании этого термина, включая и дискретные, и непрерывные, и гиб­ридные модели. Их отличает относительная простота и интуитив­ная ясность входных языков в сочетании с разумными требованиями к мощности компьютеров.