В зависимости от типов моделей и методов анализа их поведения различают различные методы моделирования [2,28]. Подходов к классификации этих методов достаточно много. Рассмотрим важнейшие из них.
1.2. Классификация методов моделирования по типу модели
При полунатурном моделировании часть системы (обычно самая громоздкая, дорогая или опасная) заменяется моделью, которая стыкуется с реальным оборудованием (датчиками, средствами обработки информации, приводами, системой управления). Примером является исследование систем ориентации космических аппаратов на конечных этапах проектирования. На Земле невозможно создать условия невесомости, поэтому аппарат помещают на специальные имитационные стенды, обеспечивающие разгрузку несущих конструкций. Вся же остальная аппаратура реальная. Такие же полунатурные эксперименты имеют место при любых проверках ракет, самолетов и т.д. с помощью специальных диагностических устройств.
Достоинство метода в высокой достоверности получаемых результатов. Недостатки – в ограничениях, накладываемых реальным оборудованием. Например, невозможность сжатия процесса моделирования во времени. Реальный объект может быть заменен как реальным объектом, и тогда чаще говорят о макетировании, так и идеальным, в частности математической или компьютерной моделью.
Широко используемое на практике физическое моделирование основано на использовании моделей той же физической природы, что и моделируемый объект, но с более удобными для экспериментирования параметрами: меньшими массой, габаритами и т.п. Оно применяется тогда, когда натурные испытания очень трудно или вообще невозможно осуществить, когда слишком велики (малы) размеры натурного объекта или значения других его характеристик (давления, температуры, скорости протекания процесса и т. п.).
Физическое моделирование основано на свойствах подобия. Два явления физически подобны, если по заданным физическим характеристикам одного можно получить характеристики другого простым пересчетом, который аналогичен переходу от одной системы координат к другой.
Примером физического моделирования является применение аэродинамических труб для продувки уменьшенных копий самолетов или автомобилей. Подобные методы моделирования широко используются и при моделировании гидротехнических сооружений (плотин, каналов).
Достоинство этого метода, прежде всего, в том, что физическую модель зачастую сделать гораздо проще, чем получить ее математическое описание. Современные технические средства позволяют легко получить точную уменьшенную копию самолета или автомобиля. С другой стороны, ряд явлений гораздо легче реализовать физически, нежели расчетным путем (например, эффект трения).
Недостатки данного метода заключаются в его относительной дороговизне, сложности повторения экспериментов и сложности анализа результатов. Не всегда результаты, полученные на малой модели, легко и просто переносятся на реальный объект. Основой обработки результатов физических экспериментов является специальная наука – «теория подобия» [4].
Использование моделей прямой аналогии основано на замене реального объекта моделью иной физической природы. В природе часто физически различные процессы описываются одними и теми же дифференциальными уравнениями или другого типа математическими моделями. Например, много общего имеют течение воды по трубам и ток в электрической цепи. Или заряд конденсатора подобен накоплению кинетического момента в механической системе. Естественно, используется такая модель, которая наиболее проста для реализации и исследований. Обычно это электрические модели. Их просто реализовать, процессы в них проходят быстро, легко могут быть повторены, зафиксированы регистрирующими приборами.
Методы моделирования на электронных вычислительных машинах часто называют методами непрямой аналогии [1]. Они делятся на методы моделирования на аналоговых вычислительных машинах (АВМ) и цифровых (ЦВМ). Во всех методах предполагается наличие исходной системы уравнений в той или иной форме. Это может быть система дифференциальных или логико-дифференциальных уравнений, описывающая весь объект. Либо, например, описания отдельных компонентов и топология объекта.
Методы моделирования на АВМ являются исторически более ранними. Они выросли из методов прямой аналогии и состоят в том, что отдельный электронный компонент реализует определенную элементарную модель (интегратора, усилителя, апериодического звена, устройства умножения, нелинейного звена и т. п.). В результате, электронная модель имеет ту же топологию, что и исходная система. Достоинство моделирования на АВМ – то, что процессы здесь непрерывные, такие же, как в самом объекте. Если регулятор также непрерывный, то моделирование на АВМ может быть эффективным. Недостатки моделей на АВМ заключаются в сложности настройки и перестройки модели, необходимости специальных мер для поддержания ее стабильности, а главное в том, что вес и габариты модели пропорциональны ее сложности. К тому же на аналоговых моделях сложно моделировать современные логико-динамические системы.
Этих недостатков лишены методы моделирования на ЦВМ. Модель легко перестраивается. Реализация цифровых регуляторов также не представляет проблем. Основной недостаток цифровых моделей – необходимость реализации специальных алгоритмов численного интегрирования непрерывных процессов. Если объект имеет широкий разброс постоянных времени, то возникает проблема точного численного интегрирования его динамики, которая решается путем компромисса между временем счета и точностью.
Наконец, возможен расчетно-аналитический метод моделирования, который состоит в получении математической модели и оперировании с ней. С точки зрения исследований систем его возможности ограничены простейшими объектами. Однако формирование математической модели является неотъемлемым элементом любого метода моделирования на ЭВМ.
1.3. Математическое моделирование и математические модели
Введем общее понятие математического моделирования (ММ), понимая под ним все методы, основанные на построении и использовании различных форм математических моделей проектируемых объектов, независимо от того, как они реализуются. В этом случае методы непрямой аналогии и расчетно-аналитический метод являются методами математического моделирования. При математическом моделировании описание системы производится в терминах некоторой математической теории, например, теории матриц, теории дифференциальных уравнений и т.д.
Математическое моделирование основано на ограниченности числа фундаментальных законов природы и принципе подобия, означающем, что явления различной физической природы могут описываться одинаковыми математическими закономерностями.
Как и всякие модели, математические модели основаны на некотором упрощении, идеализации, отбрасывании факторов, которые для данной задачи или на данном этапе исследований представляются несущественными. Например, модели объектов, используемые на начальных этапах проектирования, могут не учитывать их стохастичность, нелинейность. Механические модели звеньев механизма могут быть получены без учета их реальной формы и т.п.
В зависимости от формы представления математические модели можно разделить на аналитические, структурные и алгоритмические.
Аналитические модели представляют собой отображение взаимосвязей между переменными объекта в виде дифференциальных, алгебраических или любых других систем математических уравнений. Такие модели обычно получают на основе физических законов. Использование аналитических моделей позволяет исследовать фундаментальные свойства объекта, часто без использования ЭВМ.
Структурная модель представляет систему в виде совокупности элементов, а также совокупности необходимых и достаточных отношений между этими элементами и связей между системой и окружающей средой.
В простейшем случае с помощью структурной математической модели воспроизводится структура уравнений, описывающих поведение исследуемого объекта.
Вариантами структурных моделей являются графы, структурные и функциональные схемы, диаграммы и т.д. На принципах структурного математического моделирования работают аналоговые вычислительные машины.
Алгоритмические модели воспроизводят пошаговый процесс численного решения уравнений, представляющих математическую модель исследуемого объекта и обычно реализуются в форме программы для ЭВМ. Результаты исследования на алгоритмических моделях всегда являются приближенными. Применение компьютеров делает алгоритмические модели наиболее универсальными. С их помощью могут быть воспроизведены любые другие математические модели.
Математические модели технических объектов должны быть по сложности согласованы с возможностями восприятия человеком и с возможностями ЭВМ оперировать этими моделями. Как правило, решить все задачи в рамках некоторого единого описания, невозможно. Обычно, требуется структурирование математических моделей на несколько иерархических уровней, отличающихся детальностью описания технического объекта.
Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако большинство математических моделей технических объектов можно отнести к одному из трех обобщенных уровней, называемых далее микро-, макро- и метауровнями. В зависимости от места в иерархии описания математические модели делятся на модели, относящиеся к микро-, макро- и метауровням [29].
Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывном пространстве и времени. Типичные ММ на микроуровне – дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрические потенциалы и напряжения, давления и температуры и т.п. Возможности применения ММ в ДУЧП ограничены отдельными деталями. Попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.