Смекни!
smekni.com

А. В. Воронин (стр. 4 из 29)

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время

, а вектор зависимых переменных составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости в механических системах, напряжения и токи в электрических системах, давления и расходы жидкостей и газов в гидравлических и пневматических системах и т.п. Макроуровень является наиболее характерным для исследования мехатронных систем.

Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10000, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне.

На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние фазовые переменные элементы, а фигурируют только фазовые переменные, относящиеся к взаимным связям элементов, укрупненное представление элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем размерность ММ на макроуровне.

1.4. Классификация методов математического моделирования
применительно к этапу построения математической модели

В современной науке существуют два основных подхода к построению математических моделей систем [4,29]. Первый их них – это широко распространенный классический подход, который базируется на раскрытии явлений, происходящих внутри рассматриваемой системы.

Построение модели начинается с использования основных физических законов (законов Ньютона, Максвелла или Кирхгофа, законов сохранения массы, энергии, кинетического момента и т.д.) для описания исследуемого объекта, являющегося, например, механическим или электрическим. Из этих законов следуют различные соотношения между рассматриваемыми переменными и, в частности, связывающие их обыкновенные дифференциальные уравнения, дифференциальные урав-нения в частных производных, разностные уравнения.

Базой данного подхода к построению математической модели являются дисциплины, относящиеся к соответствующим предметным областям – теоретическая механика при построении моделей механических объектов, электротехника – при построении моделей электрических цепей и т.д.

Второй подход, характерный для методологии кибернетики и получивший развитие в трудах ее основоположников [9,32], основывается на рассмотрении системы как некоторого объекта, у которого доступными для наблюдения являются только входные и выходные переменные. Его часто называют кибернетическим моделированием. Данный подход сводит изучение системы к наблюдению ее реакций при известных воздействиях, поступающих на вход системы. Модель системы строится при этом как описание некоторого преобразователя вектора входных переменных в вектор выходных переменных. Такая кибернетическая модель сохраняет только подобие векторов входных и выходных переменных оригинала и модели, полностью игнорируя физический смысл и внутреннюю структуру объекта.

Следует отметить, что анализ методов моделирования с точки зрения построения модели может описываться в различных терминах. Выделение классического и кибернетического подхода лишь один из вариантов. Иначе можно говорить о теоретических и экспериментальных моделях. Наиболее же информативным представляется подход к получению модели с позиций «черного» и «белого» ящиков. Его достоинство в том, что он позволяет естественным образом ввести понятие «серого» ящика. Действительно, в реальных условиях редко бывает, что об объекте ничего не известно, кроме реакций. Или, что об объекте известно все. Обычно объект представляет собой «серый» ящик той или иной степени «серости». Эта серость определяется той информацией об объекте, которой владеет исследователь. Может быть известна, например, структура объекта (модели), ориентировочный порядок модели, математическая схема, которую следует применять, линейность и т. д.

Соответственно, разная степень «серости» выливается в разные методы кибернетического моделирования.

Основой кибернетического моделирования являются такие разделы математической теории систем как методы идентификации объектов [32] и методы реализации временных рядов [5].

Целью решения задач идентификации является построение по входным и выходным сигналам изучаемой системы эквивалентной ей системы из заданного класса. Эквивалентность обычно понимается в смысле какого-либо критерия ошибки или функции потерь, являющейся функционалом от выхода объекта

и выхода модели
, т.е.
. Говорят, что модели эквивалентны, если значения функций потерь для этих моделей одинаковы.

Идентификация предполагает использование как априорной информации, так и обработку данных измерений, полученных в результате экспериментов с системой. Такой подход соответствует, скорее, рассмотрению системы как «серого» ящика.

Обычно идентификация – многоэтапная процедура. Основные ее этапы следующие:

- структурная идентификация, которая заключается в определении структуры математической модели на основе теоретических соображений,

- параметрическая идентификация, включающая в себя проведение идентифицирующего эксперимента и определение оценок параметров модели по экспериментальным данным,

- проверка адекватности – проверка качества модели в смысле выбранного критерия близости выходов модели и объекта.

В большинстве технических задач априорные знания об объекте позволяют получить информацию о структуре модели. В результате задача идентификации сводится к задаче оценивания параметров и (или) состояний. Так как реальные системы всегда зашумлены, то идентификация относится к задачам приближенного моделирования.

Следует иметь в виду, что кибернетические модели не учитывают всего комплекса физических свойств элементов исследуемой технической системы, а лишь устанавливают обнаруживаемую в процессе эксперимента связь между отдельными параметрами системы, которые удается варьировать и (или) измерять. Такие модели дают адекватное описание исследуемых процессов лишь в ограниченной области пространства переменных, в которой осуществлялось их варьирование. Поэтому кибернетические модели носят частный характер, в то время как физические законы отражают общие закономерности явлений и процессов, протекающих в технической системе.

Важно отметить также, что два указанных способа получения математических моделей – классический метод и метод кибернетического моделирования конечно же, не являются взаимоисключающими.

Во-первых, они используют различную исходную информацию и, соответственно, природа ошибок и неточностей в моделях разная. В случае построения моделей на основе изучения «физической реальности» это неопределенность описания среды и неполнота физической модели объекта. В случае кибернетического моделирования основной источник неточностей – зашумленность реальных систем. Соответственно, исходная информация уже искажена помехами.

Во-вторых, при моделировании сложных систем для различных элементов этих систем могут использоваться разные методы получения математических моделей.

1.5. Классификация методов математического моделирования применительно к этапу исследования математической модели

Математическое моделирование процесса функционирования системы можно разделить на аналитическое и имитационное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифферен-циальных, конечно-разностных и т.д.) или логических условий.

Аналитическая модель может быть исследована следующими методами:

- аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

- численным, когда, не умея решать уравнения в общем виде, стремятся получить численные результаты при конкретных начальных данных;

- качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость).

Наиболее полное исследование процесса функционирования можно получить, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными исследуемой системы, т.е. в результате аналитического решения задачи. Однако такие зависимости удается получить только для сравнительно простых систем.