Рисунок 1.12 Изменение сопротивления контактного перехода в зависимости от усилия прижима
В разомкнутом состоянии сопротивлении контактов должно стремиться к бесконечности (практически миллионы Ом), что обеспечивается изолирующими свойствами среды в контактном промежутке и расстоянием между контактами. В разомкнутом состоянии контакты подвергаются химическому воздействию окружающей среды, происходит их коррозия. Коррозия заключается в образовании оксидных (под действием кислорода воздуха) и сульфитных (под действием серы воздуха) пленок. У некоторых материалов (например, у меди) эти пленки обладают большим сопротивлением, что приводит к увеличению сопротивления контактного перехода при замыкании контактов.
Наиболее тяжелый режим работы контактов связан с размыканием электрической цепи, поскольку при размыкании контактов между ними возникает электрическая дуга. При этом происходит расплавление контактов и их износ, который называется электрической эрозией.
Таким образом, в процессе работы контакты подвергаются механическому истиранию, химической коррозии и электрической эрозии. Уменьшить отрицательное влияние этих факторов можно при правильном выборе конструкции контактов и их материала.
1.2.2 Конструктивные типы контактов
Контакты реле выполняют коммутирующие функции и в значительной мере определяют надежность их работы. К контактам предъявляются следующие требования: иметь небольшое и стабильное переходное сопротивление (10 -1 – 10-3 Ом) при замыкании, иметь большое сопротивление (от десятков МОм до бесконечности) в разомкнутом состоянии, не иметь вибраций в различных режимах работы, обладать высокой электрической проводимостью, быть стойкими к внешним воздействиям (изменениям температуры, влажности и т.п.), обладать высокой износоустойчивостью, надежно коммутировать расчетную мощность управления. По форме контакты бывают: точечные, линейные и плоскостные, рисунок 1.13, изготавливаемых из серебра, меди, платины, золота, вольфрама и т.д. Благородные металлы, используемые для контактов, в частности золото и платина, весьма стойки против коррозии, но сильно подвержены эрозии, что ограничивает их применение.
Точечные контакты выполняются один в виде конуса, второй в виде плоскости, полусферы и плоскости, оба в виде полусфер. Соприкасаются контакты в одной точке. Такие контакты рассчитаны на небольшую силу тока управления (не свыше 2 – 3 А).
Линейные контакты соприкасаются по линии. Они выполняются парами клин – плоскость, цилиндр – полуплоскость (соприкосновение по образующей линии полуцилиндра), полуцилиндр – полуцилиндр. Они работают в цепях с силой тока от единиц до десятков ампер.
Плоскостные контакты соприкасаются по плоскости; они рассчитываются на работу в цепях с силой тока от десятков до сотен ампер.
В реле малой и средней мощностей наибольшее распространение имеет точечный контакт, как обеспечивающий надежное электрическое соединение при небольшом контактном давлении. Контакты при этом закрепляются на упругих плоских пружинах, рисунок 1.14.
а – точечные; б – линейные; в - плоскостные
1 – основание; 2 – неподвижный контакт; 3 – подвижный контакт; 4 - упор
Рисунок 1.14 Рычажный контактный узел
Применяется также мостиковый контактный узел, в котором размыкание цепи происходит на двух контактах, рисунок 1.15. мостиковый контактный узел обеспечивает разрыв электрической цепи в двух местах, что повышает надежность работы. В более мощных реле используют контактный узел с шарнирным креплением подвижного контакта, рисунок 1.16. При замыкании подвижный контакт этого узла перекатывается по неподвижному, что способствует очищению контактных поверхностей от оксидных пленок.
а – разомкнутый; б – замкнутый; 1 – упор; 2 – пружина сжатия контактов; 3 – мостик с подвижными контактами; 4 – неподвижные контакты
Рисунок 1.15 Мостиковый контактный узел
а – разомкнутый; б – замкнутый; 1 – рычаг; 2 – подвижный контакт; 3 – неподвижный контакт; 4 – пружина; O1 – ось поворота рычага
Рисунок 1.16 Рычажный контактный узел с перекатывающимися контактами
При замыкании и размыкании контактов на них может возникать искровой или дуговой разряд. Особенно велика возможность возникновения разряда при коммутации цепей, содержащих индуктивность и емкость. При этом возрастает износ контактных поверхностей. Наибольшее разрушение контактов происходит при возникновении электрической дуги. Износ обусловлен бомбардировкой положительного контакта электронами, вырываемыми электрическим полем дуги с отрицательного контакта, который при этом разрушается, а также за счет термического действия дуги. Кроме того, появление искры или электрической дуги между контактами создает радиопомехи и может привести к ложному срабатыванию различных цепей в автоматических системах.
Для снижения возможности возникновения искры или дуги, а также их гашения применяют специальные схемы, основанные на шунтировании нагрузки или контактов последовательным соединением резистора с емкостью или цепочки с диодом (если коммутируется цепь постоянной полярности). Действие этих схем основано на том, что магнитная энергия, накопленная на индуктивности, расходуется не в зазоре между контактами, а на элементах шунтирующей цепи.
а – шунтирование нагрузки е6мкостью и сопротивлением; б - шунтирование нагрузки диодом; в - шунтирование контактов
Рисунок 1.17 – Схемы гашения искры
На рисунке 1.17 приведены некоторые из схем гашения искры. В схемах, представленных на рисунке 1.17, а, б, при размыкании контактов К накопленная в нагрузке Zн энергия расходуется в замкнутом контуре. Значения сопротивления R и емкости С выбирают такими, чтобы не возникали колебания в образовавшемся контуре LC. Для этого используются конденсаторы емкостью С = 0,1 ÷ 1 мкФ и резисторы R = 50 ÷ 100 Ом. Следует отметить, что в установившихся рабочих режимах для постоянного тока сопротивление емкости С равно бесконечности и поэтому подключенная к нагрузке шунтирующая цепь не оказывает никакого отрицательного действия на рабочую цепь.
В схеме, представленной на 1.17, в, RC-цепь шунтирует контакты К реле, в результате чего при их размыкании энергия индуктивной нагрузки Zн в большей ее части проходит через шунтирующую цепь.
При выборе материала контактов необходимо обеспечить выполнение целого ряда требований: большая механическая прочность, высокая температура плавления, хорошие теплопроводность и электропроводность, устойчивость против коррозии и эрозии.
Перечисленным выше требованиям в наибольшей степени удовлетворяют серебро, золото, платина, медь и их сплавы, а также вольфрам, таблица 1.
Таблица 1.1 – Материалы для контактов
|   Материалы  |  Плотность, г/см3 | Твердость по Виккерсу | Точка плавления, °С | Удельное сопротивление, Ом·см·106 | Теплопроводность,Вт/см· с·град | 
| Серебро |   10,5  |    26  |    960  |    1.6  |    4,186  |  
| Платина |   21,3  |    65  |    1770  |    11,6  |    0,71  |  
| Палладий |   11,9  |    40  |    1554  |    10,7  |    0,71  |  
| Золото |   19,3  |    20  |    1063  |    2,4  |    2,92  |  
| Серебро-золото (10%) |   11,4  |    29  |    965  |    3.6  |    1,98  |  
| Серебро-палладий(10%) |   10,6  |    40  |    1000  |    6,8  |    1,46  |  
| Серебро-медь (10%) |   10,3  |    62  |    778  |    2.0  |    3,42  |  
| Платина-иридий (20%) |   21,6  |    120  |    1780  |    24,5  |    0,3  |  
| Платина-серебро (40%) |   11,0  |    95  |    1290  |    35,8  |    0,312  |  
| Золото-серебро(30%) |   16,6  |    32  |    1025  |    10.4  |    0,667  |  
Сопротивление контактного перехода определяется по формуле