Смекни!
smekni.com

А. Л. Наумов Москва 2009-2010 (стр. 4 из 8)

[править] Фуллерен в качестве материала для полупроводниковой техники

Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента[14].

[править] Фуллерен как фоторезист

Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями. В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) при травлении электронным пучком кремния с использованием маски из полимеризованной плёнки С60[10].

[править] Фуллереновые добавки для роста алмазных плёнок методом CVD

Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С2, которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0.6 мкм/час, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы — использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения[10].

[править] Сверхпроводящие соединения с С60

Как уже говорилось, молекулярные кристаллы фуллеренов — полупроводники, однако в начале 1991 г. было установлено, что легирование твёрдого С60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник. Легирование С60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X3С60 (Х — атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К3С60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х3С60, либо XY2С60 (X,Y — атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs2С60 — его Ткр=33 К[15].

[править] Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ

Следует отметить, что присутствие фуллерена С60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полномерной пленки толщиной - 100 нм. Образованная пленка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400-500ºС и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

[править] Другие области применения фуллеренов

Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на ≈30 %. Фуллерены могут быть также использованы в фармации для создания новых лекарств. Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций. Так же фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

Применение

Наноэлектроника

Диод

Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c одним типом проводимости вплавляют капельки материала с другим типом проводимости.

Полупроводниковые диоды используются в выпрямителях для преобразования переменного тока в постоянный.

Транзистор

На работе транзистора основаны все логические микросхемы. Название происходит от сочетания английских слов transfer – переносить и resistor – сопротивление. Для создания транзисторов обычно используют германий или кремний.

Обычный плоскостной (планарный) транзистор представляет собой тонкую полупроводниковую пластинку с электронным или дырочным типом проводимости, на которую нанесены участки другого полупроводника с противоположным типом проводимости. Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э). В условных обозначениях транзистора стрелка эмиттера показывает направление тока через него.

В транзисторе маленький ток управляет большим. Это суть электроники.

Но управление не обязательно подразумевает усиление. Можно управлять сигналами, несущими информацию – логические нули и единицы. А это значит, что можно целенаправленно изменять хранимую информацию – то есть обрабатывать ее, что и делает микропроцессор, работая на двоичной логике.

Обычно транзистор включен так, что нулевое или положительное напряжение кодирует “0”, а отрицательное “1”. Пока цепь базы разомкнута, ток в цепи эмиттера практически не идет, так как для основных носителей свободного заряда переход заперт. Это состояние соответствует логическому “0”. При подаче отрицательного напряжения на базу дырки – основные носители заряда в эмиттере – переходят из него в базу, создавая в цепи ток, что соответствует логической “1”.

Таким образом, “0” на входе схемы запирает транзистор, а на выходе мы имеем опять “0”. Если же подать “1” на вход (базу транзистора), он откроется и выдаст “1” на эмиттере.

Современная технология производит полупроводниковые приборы – диоды, транзисторы, фотосенсоры размером в несколько микрометров.

Однако для дальнейшего развития техники возникла необходимость перехода на транзисторы нанометровых размеров. Ведь быстродействие компьютера напрямую зависит от количества транзисторов, которое удается разместить на единице площади. И первые попытки перешагнуть нанометровый рубеж уже дали хорошие результаты.

Cоединяя несколько транзисторов, можно получить все базовые логические схемы, необходимые для работы микропроцессора: "И", "ИЛИ", и "НЕ".

Первый нанотранзистор

Транзистор состоит из шести атомов углерода, помещенных между двумя золотыми электродами. Такой транзистор позволит уменьшить размер микросхем, тем самым повысив их производительность, и снизить энергопотребление, надеются авторы проекта. Однако повсеместное применение таких транзисторов отложено на несколько лет. Во-первых, из собранных образцов рабочими оказываются лишь 15%, во-вторых, пока нет технологии, позволяющей строить микросхемы с использованием таких транзисторов.

Ученые из Йельского университета и Южной Кореи впервые создали молекулярный транзистор, состоящий из шести атомов углерода, помещенных между двумя золотыми электродами. Хотя транзисторы, функция которых заключается в усилении или переключении направления тока, уже много десятилетий являются базовыми структурными элементами, эта разработка, как говорят ученые, является даже не техническим прорывам, а настоящим научным открытием.

Использование такого рода транзисторов позволит значительно миниатюризировать электронные схемы, а также почти исключить потерю энергии.
Следует отметить, что чаще всего ученых занимает именно второй аспект – потеря энергии, которая уходит на нагрев схемы. «Обывателю порой кажется, что конечная цель ученых, работающих с транзисторами – сделать их как можно меньше», - говорит профессор Йельского университета Марк Рид (Mark Reed), участвовавший в разработке транзистора, «в то время как основной проблемой является то, сколько электроэнергии рассеется и как и из чего делать транзисторы, чтобы уменьшить эту потерю».