Рис. 3.2. Обработка GPS измерений с помощью программы LGO.
После этого в панели инструментов требуется выбрать Process и программа начнет процесс вычисления координат пунктов.
Для определения координат в системе WGS-84 используется дифференциальный режим обработки данных, получаемых от различных приёмников. Он позволяет минимизировать или исключить влияние целого ряда наиболее ощутимых источников систематических ошибок.
В процессе вычислений повышенное внимание уделяется характерной для фазовых измерений процедуре разрешения неоднозначностей, т.е. определению целого числа циклов, укладывающихся в измеряемом расстоянии. При реализации этой процедуры могут возникать затруднения, требующие вмешательства оператора в процесс обработки. Такое вмешательство сводится во многих случаях к просмотру регистрационных файлов, содержащих исходные данные от отдельных GPS приемников, и корректировке стратегии обработки. При выявлении большого количества пропусков отдельных эпох наблюдений или каких-либо других дефектов оператор принимает необходимые меры по устранению мешающих факторов.
Определение отдельных базисных линий в программе Leica Geo Office производится в автоматическом режиме с учетом влияния тропосферы и ионосферы. В базе данных программного комплекса LGO имеются различные тропосферные модели, включая модели Хопфилда и Саастамойнена. Ионосферная же модель вычисляется по результатам двухчастотных измерений.
На заключительном этапе базисные линии объединяются в локальные сети и выполняется их уравнивание традиционными методами, базирующимися на использовании способа наименьших квадратов. Как правило, если спутниковые наблюдения были выполнены в благоприятных условиях, различие между уравненными и не уравненными значениями координат оказывается незначительным.
Погрешности вычисляемых приращений координат в декартовой или геодезической системе WGS-84, а также значения базисных линий оцениваются в протоколе выполненных измерений ошибкой, характеризующей внутреннюю сходимость отдельных результатов.
По окончании обработки накопленных в течение одного дня результатов измерений в программе LGO был получен массив данных (рис. 3.3), включающий в себя идентификатор референцного пункта (Reference Id), номера точек (Point Id), статус разрешенности неоднозначностей (Ambiguity Status), приращения координат в декартовой системе WGS-84 (dX, dY, dZ) и погрешности их определения (Sd. X, Sd. Y, Sd. Z), а также ряд других данных.
Рис. 3.3. Массив окончательных результатов обработки GPS измерений.
Проанализировав данный массив, заметим, что максимальная ошибка опрделения приращений по осям X и Y составляет 0,2 мм, по оси Z – 0,5 мм.
Следует отметить, что измерения точки с идентификатором 112 в эпоху 05/25/2006 11:57:54 не разрешились. Для поиска причины неразрешенности, рассмотрим график значений геометрического фактора понижения точности в данную эпоху наблюдений (рис.3.4).
Рис. 3.4. График значений геометрического фактора расположения ИСЗ.
Из графика видно, что в больший период наблюдений значения GDOP были за пределами допусков (более 8 единиц), вследствие чего разрешить неоднозначности не представляется возможным. В этом случае для дальнейших вычислений будем использовать результаты наблюдения одного приема. Для остальных точек вычислим средние координаты из двойных измерений и представим их вместе с оценкой точности на рисунке 3.5.
Рис. 3.5. Окончательные координаты пунктов сети в системе WGS-84.
Исходя из полученных значений ошибок, максимальная из которых составляет 7 мм по оси Х, можно сделать вывод, что выполненные в данный день определения координат точек локальной геодезической сети являются высокоточными. Следовательно, можно приступать к преобразованию координат этих точек из системы WGS-84 в местную локальную систему координат.
3.3. Преобразование координат в действующую наземную систему координат
Поскольку окончательные значения координат пунктов геодезической сети должны быть известны в местной локальной системе, необходимо выполнить преобразование полученных в системе WGS-84 координат.
Для преобразования координат в местную локальную систему необходимо иметь общие (идентичные) пункты. При этом требуется определить семь параметров преобразования:
- координаты начала одной системы относительно другой, - малые углы разворота осей и масштабный фактор m » 1. Минимальное число базовых линий – 3, но чем их больше, тем лучше, так как повышается число избыточных уравнений, и они должны располагаться равномерно.Основные требования при выполнении такой процедуры сводятся к тому, чтобы обеспечить получение необходимой информации в местной локальной системе координат на том же высоком уровне точности, который характерен для спутниковых измерений.
К настоящему времени разработаны различные подходы к решению такой задачи. Наиболее широкое распространение получили различные варианты интерполяционных методов, базирующихся на использовании нескольких общих точек, координаты которых независимо определены как в системе WGS-84, так и в местной координатной системе. Данные способы, базирующиеся на методе наименьших квадратов, позволяют при максимальном сохранении высокой точности спутниковой сети обеспечить ее приближение к реальной наземной сети в любой местной или государственной системе координат.
В общем виде, преобразование координат из одной пространственной системы в другую выполняется по следующей формуле: [8]
. (3.1)Здесь:
m – масштабный коэффициент (m+1);
М – ортогональная матрица, ее элементы однозначно выражаются через три угла Кардана;
- сдвиг начала координат.На основе приведенных зависимостей составляются параметрические уравнения для общих точек двух систем, которые решаются под условием:
[Vx2+Vy2+Vz2]=min, (3.2)
При этом предусмотрена возможность определения трех, четырех и семи параметров.
Подобный алгоритм заложен во многих программных продуктах, используемых при обработке спутниковых определений. При этом необходимо отметить что, сопоставление координат в системе WGS-84 и референцной не удается сделать полностью независимым. Причиной тому, - низкая точность определения высот квазигеоида.
Рассмотрим более подробно следующие вопросы по преобразованию координат пунктов на территории аэропорта Шереметьево:
· Способ перехода из координатной системы WGS – 84 в наземные системы координат;
· Переход из координатной системы WGS-84 к местной локальной системе координат.
3.3.1. Способ перехода из координатной системы WGS-84 в наземные системы координат
К настоящему времени разработаны различные подходы к решению такой задачи. В частности, наряду с классическим методом преобразования координат, основанном на применении формул Гельмерта, широкое распространение получили различные варианты интерполяционных методов, базирующихся на использовании нескольких общих точек с независимо определенными координатами как в системе WGS-84, так и в местной координатной системе. Во многих случаях находят применение комбинированные методы, рационально сочетающие в себе позитивные стороны этих двух методов. Оптимальным вариантом комплексного решения этой задачи может стать подход, реализуемый в следующей блок-схеме [9]:
1. Свободное пространственное уравнивание GPS-измерений:
DXij, DYij, DZij, X1, Y1, Z1 - Xi, Yi, Zi
Уравнивание GPS – измеренных векторов с заданными исходными координатами одного пункта сети приводит к получению уравненных координат всех пунктов сети в системе XYZ.
2. Преобразование прямоугольных координат в геодезические:
Xi, Yi, Zi, ae, a - Bi, Li, Hi
Преобразование может быть выполнено относительно любого заданного отсчетного эллипсоида. Погрешности преобразования отсутствуют.
3. Преобразование в плоские прямоугольные координаты
для заданной проекции: Bi, Li - xi, yi
Перевычисления могут быть выполнены для любой заданной проекции с заданной точностью.
4. Преобразование геодезических высот в нормальные:
Hi - Hgi = Hi - z
Здесь используются заданные гравиметрические высоты квазигеоида z. Точность преобразования зависит от точности относительных высот квазигеоида, а также от величины вероятного систематического смещения высотной основы.
Первые четыре этапа касаются обработки результатов уравнивания GPS-измерений. На следующих двух этапах эти результаты сравниваются с известными исходными плановыми координатами xoi, yoi и исходными высотными отметками Hgoi.