Смекни!
smekni.com

Рассмотрены три варианта канатных транспортных систем на магнитной левитации и способы их работы 2 (стр. 2 из 12)

Предельным случаем канатной дороги являются лифты. Транспортный модуль – кабина лифта – движется вдоль жестко укрепленных направляющих с помощью тянущего каната. Предельным случаем лифтовой системы можем считать систему, в которой канат натянут между Землей и космическим объектом.

В NASA (США) считают, что освоение Луны и Марса с помощью устаревших технологий 60-ых годов перевозки грузов на основе ракет на химическом топливе не приведет к дальнейшему технологическому скачку, поэтому не является перспективным.

Например, для осуществления космического полета традиционными способами с помощью ракет, на высоте 150 км с первой космической скоростью необходимо затратить энергию 31,3 МДж/кг. Дополнительно преодоление гравитации потребует еще 8-10%, аэродинамическое сопротивление 1%-5%, направление ракеты 1%-5%. Следовательно, в среднем затраты на вывод ракеты в космос составят 35 МДж на 1 килограмм общего веса. Так, для системы Буран-Энергия стартовая масса с Земли составляет 2430 тон. Корабль Буран весит 105 т, а полезная нагрузка составляет всего 30 т т.е., 1,23% от общего веса корабля.

В настоящее время исследователи из NASA [10,11] предлагают упростить вывод крупных объектов на орбиту, используя систему, названную ими «Космическим лифтом» и предложенную еще Ю.В. Арцутановым в 1960 г. [12].

В их проекте "Космический лифт - это сверхпрочная легкая лента из углеродных нанотрубок весом порядка 7,5 кг/км. Ее прочность в 100 раз лучше прочности аналогичной стальной ленты, при этом в 4,5 раза она легче. Один конец ленты присоединен к поверхности Земли, а другой находится на геосинхронной орбите в космосе (на высоте 100 000 км). Гравитационное притяжение нижнего конца ленты компенсируется силой, вызванной центростремительным ускорением верхнего конца. Таким образом, лента постоянно находится в натянутом состоянии.

Изменяя длину пути, можно достигать разных орбит. Космический модуль, содержащий полезный груз, будет передвигаться вдоль ленты. Для начального старта модуля, имеющего вес 10-20 тон, потребуется его разгон до 100-200 км/ч. Вертикальное движение его предполагается осуществлять с помощью блока колес. Движение до конечной станции займет время порядка 7 дней. Как только он будет приближаться к концевой станции, его горизонтальная (орбитальная) скорость будет увеличиваться из-за центростремительного ускорения всей системы. На конечной станции, если это необходимо, модуль отсоединяется от лифта и выходит в открытый космос. Орбитальная скорость модуля при этом будет составлять 11 км/с. Этой скорости будет достаточно для того, чтобы начать путешествие к Марсу и другим планетам. Таким образом, затраты на пуск модуля будут только в начале ее пути на орбиту. Спуск будет производиться в обратном порядке - в конце спуска модуль будет ускорять гравитационное поле Земли. Можно использовать космический лифт в качестве "пусковой платформы" для космических кораблей, запускаемых к другим планетам, спутникам и астероидам (Марсу, Венере, Луне). Это поможет сократить расходы примерно в 100 раз, связанные с традиционным запуском ракет на химическом топливе. Также можно построить лифт грузоподъемностью до 100 тонн, что позволит строить на орбите большие колонии и орбитальные станции.

Мощность для разгона модуля, в зависимости от массы груза, будет варьироваться в границах от 100 киловатт до 2,4 мегаватт. Планируется передавать энергию с помощью инфракрасного лазера. Однако, коэффициент полезного действия фотопреобразователей оптического излучения в электричество не превышает 35%. Поэтому возникает проблема охлаждения фотопреобразователей в космическом пространстве.

За счет трения колес о ленту будет происходить износ ленты. Ее придется менять каждые два-три года. Таким образом, здесь также не решается проблема колесо-рельсы (трос).

Специалисты NASA в настоящее время приступили к исследованию, связанному с возможностью осуществлять запуск космических ракет с помощью электромагнитных ускорителей на начальном этапе полета. Они предполагают, что это не только поможет решить проблемы экологического характера, но и существенно снизит стоимость каждого запуска примерно в 10 раз.

Для грузовых перевозки в настоящее время рассматривается возможность использования электромагнитных катапульт для запуска космических модулей непосредственно с Земли. Такие электромагнитные пушки предложил еще в 1901 г К. Брикланд, которые развивал Э.Циолковский. В настоящее время это направление также продолжает развиваться, например, прелагается создать электромагнитные ускорители длиной до 1 км с использованием электромагнитных секций. Секции предполагается создавать как из обычных магнитов, так и из сверхпроводящих магнитов [13]. Космический летательный аппарат с помощью такой катапульты может развить скорость 6,5 км/с, при этом он испытывает ускорение до 2000g. Такие перегрузки могут выдержать только бесструктурные объекты и жидкости. Кроме того, при таких скоростях корабль должен иметь тепловую защиту для движения в атмосфере. Предполагается, что при стоимости запуска 30 долларов США на один кг груза при круглосуточной работе такая пушка может обеспечить топливом и продуктами питания космическую станцию. Отметим, что запуск одного килограмма груза с помощью ракет на химическом топливе на низколежащую орбиту стоит порядка 2500 долларов, а на геостационарную – 60 000 тыс. долларов США.

К сожалению, для достаточно дешевого запуска с помощью электромагнитных катапульт существует две основные и пока не решенные проблемы: высокие перегрузки и потеря энергии при трении о воздух при больших начальных скоростях.

Эти проекты в настоящее время из-за высокой себестоимости самой катапульты пока не получили практического применения и находятся в стадии экспериментов.

Следующей технологией высокоскоростного транспорта, в которой сделаны попытки решить проблему колесо - рельс и увеличить скорость до 500-600 км/ч, стали системы на магнитном подвесе.

Например, Маглев (Maglev от англ. magnetic levitation ru.wikipedia.org/wiki/) — это поезд на магнитной левитации (подвесе), движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, механическое трение исключается и основной тормозящей силой является сила аэродинамического сопротивления и потери в линейном электродвигателе (см. табл. 2).

Скорость, достижимая Маглев, сравнима со скоростью самолёта и позволяет составить конкуренцию воздушным сообщениям на малых расстояниях (до 2000 км). На данный момент существует 3 основных технологии магнитного подвеса поездов:

На сверхпроводящих магнитах (электродинамическая подвеска, EDS)

На электромагнитах (электромагнитная подвеска, EMS)

На постоянных магнитах; это новая и потенциально самая экономичная система.

Состав левитирует за счёт отталкивания одинаковых полюсов магнитов и, наоборот, притягивания разных полюсов. Движение осуществляется линейным двигателем, расположенным либо на поезде, либо на пути, либо и там, и там. Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава. Так, затраты электроэнергии при использовании обычных электромагнитов составляют 1 -1,5 Вт на килограмм поднимаемой массы.

Статичные поля, создаваемые одними только электромагнитами и постоянными магнитами, нестабильны, в отличие от полей диамагнетиков и сверхпроводящих магнитов. Существуют системы стабилизации: датчики постоянно замеряют расстояние от поезда до пути и соответственно ему меняется напряжение на электромагнитах. Наиболее активные разработки Маглев ведут Германия и Япония.

Использование сверхпроводящих магнитов на самом составе требуют криогенных температур от 4К до 70К. Высокая теплопроводность металла очень сильно усложняет систему подвески и крепления сверхпроводящих катушек магнитов. Поэтому требуется постоянная система регенерации криожидкости. Большие объемы криожидкости опасны для пассажиров в аварийной ситуации. Использование линейных электродвигателей требует создания вдоль пути высоко материалоемких магнитных структур. Это резко увеличивает себестоимость проекта.

Вследствие высокой себестоимости несущего пути транспортные системы на магнитной подвеске до сих пор не нашли широкого применения. Например, стоимость единственной действующей в настоящее время дороги Маглев в Шанхае длиной 30 км составила 1,3 млрд. долларов США.

Проблемой всех дорог со скоростью движения порядка 500 км/ч является высокое аэродинамическое сопротивление, приводящее к огромным затратам энергии на его преодоление. Чем длиннее состав и чем больше количество вагонов, тем выше сопротивление. Лобовое сопротивление Cx для 5-7 вагонов может достигать 0.31-0.5 [14].

Кроме этого, из-за несимметричной аэродинамической формы состава возникает дополнительная подъемная сила, приводящая к неустойчивости поезда, особенно при сильных порывах ветра. Эта проблема вызвана тем, что путь является «жестким» по отношению к поезду. Попытка устранить эти проблемы путем увеличения зазора от 1-2 см до 10-15 см между двигателем и рельсом приводит к дополнительным затратам энергии.

В северных районах с большим количеством снежных осадков и возможностью обледенения возникают дополнительные сложности эксплуатации таких дорог. Поэтому на сегодняшний день даже не рассматривается возможность их использования на Севере.