Аналоговые разъемы. На недорогих платах вы найдете всего один разъем для подключения колонок (стерео аудиовыход), но в большинстве случаев, как мы уже говорили, под вторую пару колонок можно задействовать соседний разъем для подключения микрофона или дополнительный аудиовход. Таким образом, мы получаем как минимум три одинаковые «дырочки» («линейный» вход, колонки, микрофон). Их общее число может быть увеличено до пяти на картах классом повыше - отдельный разъем получает каждая пара колонок и появляется дополнительный выход на наушники.
15-штырьковый MIDI - порт, напоминающий обычный разъем СОМ - порта, предназначен для подключения всего двух видов устройств – игрового манипулятора (джойстика) или внешней МIDI - клавиатуры. Сегодня его наличие уже не обязательно: все эти устройства можно успешно подключить по USB.
Цифровые входы и выходы (оптические, коаксиальные S/PDIF), с помощью которых можно подключить звуковую карту к внешним усилителям, передавая на них не искаженный аналоговым преобразованием звук по цифровому каналу. Таким образом, например, при воспроизведении DVD-дисковов можем выбрать, будет ли разбрасывать звук по каналам сам компьютер или внешний аппаратный декодер - в первом случае колонки подключаются напрямую через аналоговый вход, а во втором - через декодер, подключенный к звуковой карте по цифровому каналу. Возможен и цифровой ввод звука в компьютер с профессиональной звуковоспроизводящей аппаратуры (например, с проигрывателей минидисков).
Наличие хотя бы одного выхода S/PDIF полезно в том случае, если у вас имеется высококлассный музыкальный центр с аналогичным цифровым входом или полноценная система «домашнего театра». А вот вход вам вряд ли понадобится - до тех пор, пока вы не решитесь заняться музыкой на профессиональном уровне.
На некоторых новых аудиоплатах (например, семейства Sound Вlaster
Audigy) появился и новый порт - цифрового интерфейса FireWire (IEEE 1394).
Как видим, на звуковых картах дорогих домашних и полупрофессиональных модификаций может быть чуть ли не десяток различных разъемов и входов. Частенько они уже не умещаются на одной-единственной плате, и тогда производителям приходится переносить часть разъемов на вторую, дополнительную планку - а то и на внешний блок. Самые дорогие звуковые платы сегодня в обязательном порядке комплектуются коробочкой, на которую вынесены все необходимые разъемы и регуляторы.
Жесткий диск
Человек способен изредка вспоминать про свои ошибки - и делать из этого выводы. И теперь, вместо того, чтобы негуманно кушать себе подобных, цивилизованный человек предпочитает изводить своих собратьев другими способами - ибо накрепко запомнил, что подобные гастрономические пристрастия ведут как минимум к осуждению ближними, а как максимум - к прежде временному раку желудка.
Память (пускай и коллективно-бессознательная) - великая вещь! Согласитесь, есть в этом мире бесполезной информации то, что стоит хранить в голове постоянно. Хотя бы дорогу до родного офиса и имя любимой супруги. Без памяти человек никогда не стал бы человеком. Ну а компьютер компьютером.
Ах да, память у компьютера уже есть - оперативная! Но ей одной сыт не будешь - пусть быстрая она, пусть шустрая, но уж больно легкомысленная.. Информация в ней хранится недолго - до исчезновения питания. Представьте, каково бы было нам каждое утро просыпаться, забыв весь прошлый опыт, радуя мир криками «уа-уа» и требуя соску?
Хорошо еще, что у большинства людей (за исключением разве что политиков) проблем с постоянной памятью нет. И свои поступки и обещания они, в общем-то, способны вспомнить. Компьютеру повезло гораздо меньше.
Как мы помним, первые вычислительные устройства сохранять информацию на каком-то внешнем или внутреннем носителе не могли. Потом появилась бумажная полоска с пробитыми дырочками - перфолента, носитель столь же неудобный, сколь и ненадежный. и тем не менее, именно бумага исправно работала главным «запоминающим устройством» в компьютере на протяжении нескольких десятилетий.
В конце сороковых годов на смену продырявленной бумаге пришла магнитная запись - этот принцип был открыт еще в конце XIX века, а до практического применения доведении инженерами компании BASF в 1934 г. С магнитной записью знаком каждый из нас - хотя бы на примере устаревших, но все еще популярных у нас аудио- и видеокассет.
Носителем информации здесь служит слой магнитного материала (первоначально им была обычная ржавчина - оксид железа, а сегодня все чаще используется тонкая пленка, состоящая из молекул чистого железа, кобальта и никеля), толщина которого составляет доли микрона! Именно эта тоненькая пленочка, помещенная на стеклянную или металлическую основу и хранит на себе все те гигабайты информации, которыми мы забиваем наш компьютер. .
Впрочем, гигабайты появились не сразу.
Трудно поверить, что первые жесткие диски, появившиеся в начале 70-х, имели емкость не более десятка килобайт! А когда на рынке дебютировали 10 - мегабайтные диски, большинство пользователей просто не знало, чем заполнить такой гигантский объем... Ведь все необходимое тогда программное обеспечение (операционная система, текстовый редактор, пара-тройка игр) спокойно умещалось в 2-3 Мб. Со временем емкость жесткого диска возросла в тысячи раз, однако принципы его устройства не претерпели серьезных изменений.
Немного истории. В 1973 г. IBM представила IBM mode1 3340 disk drive - прообраз современных жестких дисков. Эта модель имела два разделенных шпинделя, каждый с емкостью в 30 мегабайт. По этой причине этот диск очень часто назывался как «30 – 30» Данное наименование и породило кличку «винчестер» - по ассоциации с известной маркой винтовки «винчестер 30 - 30».
Как и прежде, любой «винчестер» состоит из трех основных блоков.
Первый блок и есть, собственно, само хранилище информации – один или несколько стеклянных (или металлических) дисков, покрытых с двух сторон магнитным материалом, на который и записываются данные. Конечно, записываются они не как попало, а в точном соответствии с физической структурой диска. А выглядит она так: магнитная поверхность каждого диска разделена на концентрические «дорожки», которые, в свою очередь, делятся на отрезки-сектора. Но не будем забывать о том, что жесткий диск - устройство все-таки объемное, а не двухмерное. Дисков в корпусе винчестера может быть несколько, да имеют они по две рабочие поверхности! Поэтому, наряду с дорожками и секторами, создатели жесткого диска предусмотрели еще и третье деление - на цилиндры. Цилиндр - это сумма всех совпадающих друг с другом дорожек по вертикали, по всем рабочим поверхностям. Таким образом, чтобы узнать, какое количество цилиндров содержит жесткий диск, нам необходимо просто умножить число дорожек на суммарное число рабочих поверхностей, которое, в свою очередь, соответствует удвоенному числу дисков в винчестере.
Разбивка винчестера на дорожки и секторы происходит еще на заводе, при его изготовлении - она называется «форматированием низкого уровня». Не путайте его с другим форматированием - логическим, во время которого существующие физические секторы объединяются в кластеры. Эту операцию нам, возможно, придется делать самим, при помощи специальных программ.
Второй блок - механика жесткого диска, ответственная за вращение этого массива «блинов» и точное позиционирование системы читающих головок. Каждой рабочей поверхности жесткого диска соответствует одна читающая головка, причем располагаются они по вертикали точным столбиком. А значит, в любой момент времени все головки находятся на дорожках с одинаковым номером. То есть, работают в пределах одного цилиндра. Кстати, интересно, что в качестве одного из важнейших технологических пара метров любого диска указывается именно число читающих головок, а не совпадающее с ним количество рабочих поверхностей.
Наконец, третий блок включает электронную начинку - микросхемы, ответственные за обработку данных, коррекцию возможных ошибок и управление механической частью, а также микросхемы кэш-памяти.
Получается, что если описывать каждый винчестер «по науке», в соответствии с его физическими характеристиками, нам потребуется добрый десяток параметров, большинство из которых к тому же ничего не скажут обычному пользователю.
Хорошо, что на свете существуют более простые и понятные всем нам
характеристики, на которые мы и смотрим при покупке нового винчестера.
Объем диска. Первым и главным параметром любого винчестера является, конечно же, количество информации, которое он способен в себе хранить. Еще недавно эта емкость измерялась в мегабайтах, однако реальная величина сегодня составляет до полутора сотен гигабайт! Здесь работает закон, схожий с «законом Мура» - ежегодно наши требования к объему накопителей удваиваются. Сегодня вряд ли стоит покупать винчестер объемом меньшим, чем 80 Гб, - тем более что разница в цене между винчестерами на порядок меньше их разницы в объеме: переплатив всего лишь 30 процентов стоимости, вы можете приобрести винчестер вдвое большей емкости.
Имейте в виду: как правило, купленный вами винчестер практически всегда оказывается меньшей емкости, чем заявлял производитель - дело в том, что при расчете объема жесткого диска 1 Мб признается равным 1000 килобайт, 1 гигабайт - 1000 мегабайт. Разница в объеме получается, таким образом, не маленькая - 50-150 Мб, в зависимости от емкости винчестера. И разница эта - отнюдь не в пользу потребителей...
Скорость чтения данных. Как ни странно, на этот параметр редко обращают внимание при покупке - мол, скорость практически любого современного винчестера большой емкости настолько высока, что разница в один - два процента погоды не делает. Однако на деле разница доходит до 20 процентов, что, согласитесь, не так уж и мало. Средний сегодняшний показатель - около 9-12 Мб/с.