Смекни!
smekni.com

Технические средства информатизации (стр. 12 из 57)

Как правило, на материнскую плату устанавливаются не отдельные микросхемы памяти, а модули памяти: SIММ-модули и DIMM-модули. Модули представляют собой микросхемы, объединенные на специальных печатных платах вместе с некоторыми дополнительными элементами. Разрядность модулей памяти определяется разрядностью микросхем памяти, установленных на плате: 30-контактные SIMM-модули — 8-разрядные; 72-контактные SIMM-модули — 32-разрядные, а DIMM-модули — 64-разрядные.

72-контактные SIMM-модули необходимо устанавливать только парами, поскольку каждый представляет собой половину стандартного банка памяти. 168-контактные DIMM-модули можно устанавливать по одному, причем каждый из них может вмещать до 512 Мбайт оперативной памяти. 64 Мбайт — минимальный объем оперативной памяти для ПК, работающих под Windows 98. При этом практика показывает, что через каждые два года требования к объему оперативной памяти удваиваются.

RIMM-модулъ — высокоскоростной модуль оперативной памяти, разработанный компанией Rambus совместно с Intel. Отличается от DIMM-модуля тем, что имеет 184 контакта и металлический экран, обеспечивающий защиту от наводок и взаимного влияния высокочастотных модулей.

4.2. Распространенные типы памяти

FRM DRAMширокораспространенная память, появившаяся в моделях ПК с CPU 80486 и позволившая обеспечить время доступа 60 не. Однако микросхемы этого типа не могли работать с CPU, частота которого превышала 28 МГц.

EDO DRAMосновной тип памяти процессоров Pentium. Память этого типа работает на частоте системной шины не более 66 МГц со временем доступа от 50 до 70 не. Модули EDO используются в основном для модернизации встроенной памяти на некоторых моделях внешних устройств (например, лазерных принтеров).

SDRAM-модули устанавливаются в ПК с процессором Pentium III, обеспечивают высокое быстродействие за счет снижения времени доступа до 7 —9 нс. Пропускная способность SDRAM-модулей составляет от 246 до 1000 Мбайт/с. Современные микросхемы SDRAM могут работать на тактовых частотах от 66 до 150 МГц.

Большинство модулей оперативной памяти, выпущенных в 1999 — 2000 гг., содержат две дополнительные микросхемы: SPD иЕСС.

SPD — микросхема, установленная на модуле памяти DIMM, содержит подробную информацию о типе установленной памяти и некоторые другие параметры. Материнские платы, выпускаемые фирмой Intel, не работают с модулями памяти без SPD.

ЕСС — тип модулей памяти с возможностью коррекции ошибок, что обеспечивает повышение надежности.

RDRAM, или Rambus DRAM, разработана компанией Rambus Inc как память XXI в., обеспечивающая время доступа 4 не, скорость передачи данных до 6 Гбайт/с и поддерживающая рабочую частоту шины до 800 МГц. Однако значительная часть устройств, подключенных к компьютеру, оснащенному RDRAM, не выдерживает столь резкого повышения частоты системной шины: даже при частоте 133 МГц у некоторых моделей жестких дисков, звуковых карт и видеокарт возникают проблемы.

DDR SDRAMусовершенствованный вариант SDRAM-моду-лей, разработанный корпорацией Samsung и обеспечивающий пропускную способность 2,5 Гбайт/с при времени доступа 5 — 6 не и рабочей частоте шины 600 — 700 МГц. Особенности архитектуры позволяют DDR SDRAM обрабатывать за такт вдвое больше данных, чем обычная SDRAM. В связи с этим даже на стандартных частотах 100 и 133 МГц ее производительность вдвое выше.

SLDRAMстандарт модулей памяти, вышедший на компьютерный рынок в 1999 г. и поддерживаемый фирмами Apple, Hewlett-Packard и IBM. Пропускная способность SLDRAM составляет 3,2 Гбайт/с. Дальнейшее увеличение пропускной способности разработчики планируют за счет повышения тактовой частоты системной шины до 800 МГц.

Лидерами по продажам высококачественных модулей памяти на российском рынке являются Kingstone, Micron, Samsung.

Контрольные вопросы

1. Что входит в состав основных компонентов материнской платы ПК?

2. Каково назначение шин ПК?

3. Перечислите основные характеристики шин ПК.

4. Охарактеризовать стандарты шин ПК.

5. В чем отличие шины и порта ПК?

6. Как осуществляется функционирование последовательной и параллельной связи?

7. Какие параметры характеризуют производительность процессора?

8. Опишите особенности процессоров различных поколений.

9. Перечислите основные характеристики микросхем памяти.

10. Охарактеризовать распространённые типы микросхем памяти.

Раздел 3. Накопители информации.

История развития вычислительной техники неразрывно связана с совершенствованием устройств хранения информации (накопителей информации), так как характеристики именно этих устройств в значительной мере определяют характеристики компьютеров.

Накопитель информации — устройство записи, воспроизведения и хранения информации, а носитель информации — это предмет, на который производится запись информации (диск, лента, твердотельный носитель).

Накопители информации могут быть классифицированы по следующим признакам:

• способу хранения информации: магнитоэлектрические, оптические, магнитооптические;

• виду носителя информации: накопители на гибких и жестких магнитных дисках, оптических и магнитооптических дисках, магнитной ленте, твердотельные элементы памяти;

• способу организации доступа к информации — накопители
прямого, последовательного и блочного доступа;

• типу устройства хранения информации — встраиваемые (внутренние), внешние, автономные, мобильные (носимые) и др.

Значительная часть накопителей информации, используемых в настоящее время, создана на базе магнитных носителей.

Физические основы процессов записи и воспроизведения информации на магнитных носителях заложены в работах физиков М.Фарадея (1791-1867) и Д. К. Максвелла (1831-1879). В магнитных носителях информации цифровая запись производится на магниточувствительный материал. К таким материалам относятся некоторые разновидности оксидов железа, никель, кобальт и его соединения, сплавы, а также магнитопласты и магнитоэласты со связкой из пластмасс и резины, микропорошковые магнитные материалы.

Магнитное покрытие имеет толщину в несколько микрометров. Покрытие наносится на немагнитную основу, в качестве которой для магнитных лент и гибких дисков используются различные пластмассы, а для жестких дисков — алюминиевые сплавы и композиционные материалы подложки. Магнитное покрытие диска имеет доменную структуру, т. е. состоит из множества намагниченных мельчайших частиц. Магнитный домен (от лат. dominium — владение) — это микроскопическая, однородно намагниченная область в ферромагнитных образцах, отделенная от соседних областей тонкими переходными слоями (доменными границами). Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с направлением магнитных силовых линий. После прекращения воздействия внешнего поля на поверхности домена образуются зоны остаточной намагниченности. Благодаря этому свойству на магнитном носителе сохраняется информация о действовавшем магнитном поле. При записи информации внешнее магнитное поле создается с помощью магнитной головки. В процессе считывания информации зоны остаточной намагниченности, оказавшись напротив магнитной головки, наводят в ней при считывании электродвижущую силу (ЭДС). Схема записи и чтения с магнитного диска дана на рис. 3.1. Изменение направления ЭДС в течение некоторого промежутка времени отождествляется с двоичной единицей, а отсутствие этого изменения — с нулем. Указанный промежуток времени называется битовым элементом.

Рис. 3.1. Запись и чтение данных с магнитного диска

Поверхность магнитного носителя рассматривается как последовательность точечных позиций, каждая из которых ассоциируется с битом информации. Поскольку расположение этих позиций определяется неточно, для записи требуются заранее нанесенные метки, которые помогают находить необходимые позиции записи. Для нанесения таких синхронизирующих меток должно быть произведено разбиение диска на дорожки и секторы — форматирование.

Организация быстрого доступа к информации на диске является важным этапом хранения данных. Оперативный доступ к любой части поверхности диска обеспечивается, во-первых, за счет придания ему быстрого вращения и, во-вторых, путем перемещения магнитной головки чтения/записи по радиусу диска. Гибкий диск вращается со скоростью 300—360 об/мин, а жесткий диск — 3600— 7200 об/мин.

Тема 3.1. Накопители на магнитных дисках.

План:

5. Накопители на гибких магнитных дисках.

6. Накопители на жёстких магнитных дисках

6.1 Конструкция и принцип действия.

6.2 Интерфейсы жёстких дисков.

6.3 Основные характеристики.

1. Накопители на гибких магнитных дисках.

Накопители на гибких дисках относятся к устройствам долговременного хранения информации. Первый гибкий магнитный диск (ГМД) был создан в 1971 г. в лаборатории фирмы IBM, возглавляемой А. Шугартом, и имел диаметр 8". С 1975 г. начался серийный выпуск дисководов формата 5,25", а в 1981 г. стали стандартом диски диаметром 3,5". В 1986 г. фирма IBM начала выпуск гибких магнитных дисков (ГМД или дискет) 3,5" емкостью 720 Кбайт, а в 1987 г. многие фирмы-производители начали выпуск ГМД 3,5"емкостью 1,44 Мбайт. Фирма Toshiba в 1989 г. разработала новые диски емкостью 2,88 Мбайт. В настоящее время наибольшее распространение получили диски диаметром 3,5".

Для записи и считывания информации с ГМД используются периферийные устройства ПК — дисководы (Floppy Dick DriveFDD).

Конструктивно дисковод состоит из механических и электронных узлов: рабочего двигателя, рабочей головки, шагового двигателя и управляющей электроники.

Рабочий двигатель включается тогда, когда в дисковод вставлена дискета. Двигатель обеспечивает постоянную скорость вращения дискеты: для дисковода 3,5"— 300 об/мин. Время запуска двигателя — около 400 мс.