Смекни!
smekni.com

Технические средства информатизации (стр. 21 из 57)

Размер зерна экрана определяет расстояние между ближайшими отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения. Все мониторы с зерном более 0,28 мм относятся к категории грубых и стоят дешевле. Лучшие мониторы имеют зерно 0,24 мм, достигая 0,2 мм у самых дорогостоящих моделей.

Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали. Мониторы с диагональю экрана 19" поддерживают разрешение до 1920 х 14400 и выше.

Тип электронно-лучевой трубки следует принимать во внимание при выборе монитора. Наиболее предпочтительны такие типы кинескопов, как Black Trinitron, Black Matrix или Black Planar. Мониторы этих типов имеют особое люминофорное покрытие.

Потребляемая мощность монитора указывается в его технических характеристиках. У мониторов 14" потребляемая мощность не должна превышать 60 Вт.

Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позволяет наблюдать на экране монитора только изображение, формируемое компьютером, и не утомлять глаза наблюдением отраженных объектов. Существует несколько способов получения антибликовой (не отражающей) поверхности. Самый дешевый из них — протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко, качество изображения низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализован фирмами Hitachi и Samsung. Антистатическое покрытие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.

Защитный экран (фильтр) должен быть непременным атрибутом ЭЛТ-монитора, поскольку медицинские исследования показали, что излучение, содержащее лучи в широком диапазоне (рентгеновское, инфракрасное и радиоизлучение), а также электростатические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.

По технологии изготовления защитные фильтры бывают: сеточные, пленочные и стеклянные. Фильтры могут крепиться к передней стенке монитора, навешиваться на верхний край, вставляться в специальный желобок вокруг экрана или надеваться на монитор.

Сеточные фильтры практически не защищают от электромагнитного излучения и статического электричества и несколько ухудшают контрастность изображения. Однако эти фильтры неплохо ослабляют блики от внешнего освещения, что немаловажно при длительной работе с компьютером.

Пленочные фильтры также не защищают от статического электричества, но значительно повышают контрастность изображения, практически полностью поглощают ультрафиолетовое излучение и снижают уровень рентгеновского излучения. Поляризационные пленочные фильтры, например фирмы Polaroid, способны поворачивать плоскость поляризации отраженного света и подавлять возникновение бликов.

Стеклянные фильтры производятся в нескольких модификациях. Простые стеклянные фильтры снимают статический заряд, ослабляют низкочастотные электромагнитные поля, снижают интенсивность ультрафиолетового излучения и повышают контрастность изображения. Стеклянные фильтры категории «полная защита» обладают наибольшей совокупностью защитных свойств: практически не дают бликов, повышают контрастность изображения в полтора-два раза, устраняют электростатическое поле и ультрафиолетовое излучение, значительно снижают низкочастотное магнитное (менее 1000 Гц) и рентгеновское излучение. Эти фильтры изготавливаются из специального стекла.

Безопасность монитора для человека регламентируется стандартами ТСО: ТСО 92, ТСО 95, ТСО 99, предложенными Шведской конфедерацией профсоюзов. ТСО 92, выпущенный в 1992 г., определяет параметры электромагнитного излучения, дает определенную гарантию противопожарной безопасности, обеспечивает электрическую безопасность и определяет параметры энергосбережения. В 1995 г. стандарт существенно расширили (ТСО 95), включив в него требования к эргономике мониторов. В ТСО 99 требования к мониторам еще более ужесточили. В частности, стали жестче требования к излучениям, эргономике, энергосбережению, пожаробезопасности. Присутствуют здесь и экологические требования, которые ограничивают наличие в деталях монитора различных опасных веществ и элементов, например тяжёлых металлов.

2. Плоскопанельные мониторы

Несмотря на широкое распространение, мониторы на основе ЭЛТ имеют ряд существенных недостатков, ограничивающих (а порой и делающих невозможным) использование мониторов. Такими недостатками являются:

· Большие масса и габариты.

· Значительное энергопотребление, наличие тепловыделения.

· Излучения, вредные для здоровья человека.

· Значительная нелинейность растра, сложность ее коррекции.

Первые два недостатка не позволяют использовать мониторы на основе ЭЛТ в переносных компьютерах типа Laptop и Notebook, остальные осложняют работу оператора и наносят вред его здоровью. Однако главными недостатками обычных мониторов все же являются большие габариты, масса и энергопотребление. Для устранения этих недостатков были разработаны малогабаритные дисплеи на основе жидких кристаллов, которые в дальнейшем будем называть ЖК-мониторами. Главное отличие ЖК-монитора от обычного состоит в том, что он совершенно плоский. По этой причине мониторы подобного типа стали называть плоскопанельными.

В настоящее время плоскопанельные мониторы используются не только в составе переносных компьютеров типа Notebook, но и в качестве самостоятельного устройства отображения, которое можно подключить к любому PC. Обладая рядом важных преимуществ по сравнению с мониторами на основе ЭЛТ, плоскопанельные мониторы, несмотря на более высокую стоимость, получают все более широкое распространение.

2.1. Принципы действия ЖК-мониторов.

Основным элементом ЖК-монитора является ЖК-экран, состоящий из двух панелей, выполненных из стекла, между которыми размещен слой жидкокристаллического вещества. Эти стеклянные панели обычно называют подложками. Как и в обычном мониторе, экран ЖК-монитора представляет собой совокупность отдельных элементов — ЖК-ячеек, каждая из которых генерирует 1 пиксель изображения. Однако, в отличие от зерна люминофора ЭЛТ, ЖК-ячейка сама не генерирует свет, а лишь управляет интенсивностью проходящего света, поэтому ЖК-мониторы всегда используют подсветку.

По сути ЖК-ячейка представляет собой электронно-управляемый светофильтр, принцип действия которого основан на эффекте поляризации световой волны. Жидкокристаллическое вещество, размещенное между подложками, имеет молекулы вытянутой формы, называемые нематическими. Благодаря этому молекулы ЖК-вещества имеют упорядоченную ориентацию, что приводит к появлению оптической анизотропии, при которой показатель преломления ЖК-вещества зависит от направления распространения световой волны. Если нанести на подложки мелкие бороздки, то молекулы ЖК-вещества будут ориентированы вдоль этих бороздок. Другим важным свойством ЖК-вещества является зависимость ориентации молекул от направления внешнего электрического поля. Используя два этих свойства, можно создать электронно-управляемый светофильтр.

Рис. 4.7. Принцип действия ячейки ЖК-монитора.

В ЖК-мониторах чаще всего используются ЖК-ячейки с твистированной (закрученной на 90°) ориентацией молекул (рис. 4.7, а). Для создания такой ячейки применяются подложки, у которых ориентирующие канавки также развернуты друг относительно друга на угол 90°. Такая ячейка называется твистированной нематической (Twisted Nematic). Проходя через эту ячейку, плоскость поляризации световой волны также поворачивается на 90°. Помимо ориентирующего действия, подложки ЖК-ячейки играют роль поляризационных фильтров, поскольку пропускают световую волну только с линейной поляризацией. Верхняя подложка называется поляризатором, а нижняя — анализатором. Векторы поляризации подложек так же, как и векторы их ориентирующего действия, развернуты на 90° друг относительно друга.

При отсутствии внешнего электрического поля падающий на ячейку свет проходит через поляризатор и приобретает определенную поляризацию, совпадающую с ориентацией молекул жидкокристаллического вещества у поверхности поляризатора. По мере распространения света по направлению к нижней подложке (анализатору) его плоскость поляризации поворачивается на 90°. Достигнув анализатора, свет свободно проходит через него, поскольку плоскость его поляризации совпадает с плоскостью поляризации анализатора. В результате ЖК-ячейка оказывается прозрачной.

Ситуация изменится, если к подложкам приложить напряжение 3-10 В. В этом случае между подложками возникнет электрическое поле и молекулы жидкокристаллического вещества расположатся параллельно силовым линиям поля (рис. 4.7, б). Твистированная структура жидкокристаллического вещества исчезает, и поворота плоскости поляризации проходящего через него света не происходит. В результате плоскость поляризации света не совпадает с плоскостью поляризации анализатора, и ЖК-ячейка оказывается непрозрачной.