Смекни!
smekni.com

Технические средства информатизации (стр. 25 из 57)

Рис. 4.11. Модулятор отражательного проектора типа ILA

Одним из главных компонентов модулятора является зеркало-поляризатор, одновременно выполняющее функции зеркала, поляризатора и анализатора. Световая волна, падающая на него под углом 45°, разделяется на две составляющие: одна с поляризацией, параллельной поверхности зеркала, и другая—с поперечной поляризацией, перпендикулярной к поверхности зеркала. Первая составляющая свободно проходит через зеркало, а вторая (полезная) — полностью отражается в направлении модулятора, выполненного на основе ЖК-панели особой конструкции.

Эта ЖК-панель лишена матричной структуры и является сплошной. В качестве элементов, управляющих поляризацией участков ЖК-панели, выступают не тонкопленочные транзисторы, как в TFT-матрице, а участки фоторезистивного слоя, на котором создается потенциальный рельеф, повторяющий спроецированное на него изображение. Между фоторезистивным слоем и ЖК-панелью размещается диэлектрическое зеркало, которое выполняет роль основной отражающей поверхности. Внесение в отраженный свет дополнительных поляризационных сдвигов, повторяющих потенциальный рельеф (спроецированное на фоторезистивный слой изображение), будет влиять на степень прохождения отраженного света через зеркало, т. е. эквивалентно модуляции отраженного потока.

Благодаря отсутствию зернистой структуры ЖК-панели можно получить исключительно четкое изображение, а низкие потери на разогрев и поглощение света обеспечивают фантастический для обычных ЖК-проекторов световой поток — примерно до 12 000 лм! Однако необходимость в наличии встроенной проекционной системы и очень сложная конструкция модулятора значительно влияют на габариты и массу (от 120 до 500 кг), а также на стоимость проектора (до 250 000$), что, естественно, ограничивает его применение. Более того, проекторы ILA предназначены для работы с аналоговым видеосигналом (обусловлено конструкцией встроенного проектора), поэтому относятся к классу видеопроекторов.

Развитием технологии ILA применительно к мультимедийным проекторам стала технология D-ILA (Digital ILA), также разработанная специалистами фирмы JVC. Основу проекторов D-ILA составляет так называемая отражательная (Reflective) ЖК-, или R-ЖК-панель. Ее главное отличие от обычной ЖК-матрицы состоит в том, что электроды, управляющие поляризацией ячеек, имеют квадратную форму. Они выполняют роль зеркал.

Рис. 4.12. Схема модулятора проектора D-ILA

За счет этого коэффициент отражения R-ЖК-панели для белого света доходит до 95%. По сравнению с обычной TFT-панелью, R-ЖК-панель обеспечивает более высокие яркость, четкость и контрастность изображения. Кроме того, на R-ЖК-панель вместо аналогового видеосигнала подается цифровой сигнал, поэтому не нужен встроенный проектор. В результате схема модулирующего канала проектора D-ILA (рис. 4.12) оказывается гораздо проще, чем схема проектора ILA.

Конструкция проектора D-ILA (рис. 4.13) напоминает конструкцию полисиликонового проектора с той разницей, что вместо просветных TFT-матриц в нем используются отражательные R-ЖК-панели совместно с блоком поляризатора-анализатора.

Рис. 4.13. Схема проектора D-ILA

Технология D-ILA является перспективной, поэтому в настоящее время выпуск проекторов D-ILA наладили, помимо фирмы JVC, несколько конкурирующих фирм (InFocus, Pioneer, Panasonic и др.).

В настоящее время наиболее используемой в конструкциях ЖК-проекторов отражательного типа является технология DMD/DLP, разработанная фирмой Texas Instruments.

В DMD/DLP-проекторах отражательного типа излучение источника света модулируется изображением при отражении от матрицы. В DMD/DLP-проекторах в качестве отражающей поверхности используется матрица, состоящая из множества электронно-управляемых микрозеркал, размер каждого из которых около 1 мкм. Каждое микрозеркало имеет возможность отражать падающий на него свет либо в объектив, либо в поглотитель, что определяется уровнем поданного на него электрического сигнала. При попадании света в объектив образуется яркий пиксел экрана, а в поглотитель — темный. Такие матрицы обозначаются аббревиатурой DMD (Digital Micromirror Deviceцифровой микрозеркальный прибор), а технология, на которой основан их принцип действия, — DLP (Digital Light Processingцифровая обработка света).

Как правило, в одной DMD-матрице содержится около 848 х 600 = 508 800 микрозеркал, что превосходит SVGA-разрешение (800x600 = 480 000 пикселов).

Для получения цветного изображения используются проекторы двух вариантов: с тремя или одной DMD-матрицей. Трехматричный проектор, схема которого дана на рис. 4.14, по способу формирования цветного изображения аналогичен полисиликоновому (см. рис. 4.10).

Рис. 4.14. Схема трехматричного отражательного мультимедийного проектора DMD/DLP/

В одноматричных DMD/DLP-проекторах полный цветной кадр формируется в результате последовательного наложения трех быстро меняющихся монохромных кадров: черно-красного, черно-зеленого и черно-синего. Смена монохромных кадров на экране незаметна благодаря инерционности человеческого зрения. Монохромные кадры образуются при последовательном освещении DMD-матрицы лучом красного, зеленого и синего цветов. Луч каждого цвета образуется за счет пропускания светового потока от проекционной лампы через вращающийся диск с красным, зеленым и синим светофильтрами, как это показано на схеме од-номатричного проектора (рис. 4.15). Управление микрозеркалами синхронизировано с поворотом светофильтра.

По сравнению с ЖК-технологиями технология DLP обладает следующими преимуществами: практически полным отсутствием зернистости изображения, высокой яркостью и равномерностью ее распределения. К недостаткам одноматричных DMD-проекторов следует отнести заметное мелькание кадров.

Рис. 4.15. Схема одноматричного отражательного мультимедийного проектора

Однако эти приемы все же полностью не устраняют два главных недостатка ЖК-проекторов просветного типа — разогрев матрицы и сравнительно низкую яркость изображения. Даже с использованием технологии PBS и микролинзовых растров недостаточная прозрачность пикселов матрицы не позволяет получить мощный световой поток (световой поток ЖК-проекторов просветного типа обычно не превышает 500—600 лм).

Контрольные вопросы.

1. Назначение и классификация проекционных аппаратов.

2. Раскрыть принцип работы и характеристики Оверхед-проекторов и ЖК-панелей.

3. Конструктивные особенности мультимедийных проекторов, их классификация.

4. Описать структуру TFT-проектора, его характеристики.

5. Принципы работы ЖК-проекторов отражательного типа.

6. Раскрыть особенности технологий ILA и DMD/DLP.

Тема 4.3. Видеоадаптеры.

План.

  1. Режимы работы видеоадаптера.
  2. Основные типы видеоадаптеров.
  3. 2D- и 3D-акселераторы.
  4. Синтез трехмерного изображения. 3D-конвейер.
  5. Устройство и характеристики видеоадаптера.

Видеоадаптер (видеокарта) является компонентом видеосистемы ПК, выполняющим преобразование цифрового сигнала, циркулирующего внутри ПК, в аналоговые электрические сигналы, подаваемые на монитор. По существу, видеоадаптер выполняет роль интерфейса между компьютером и устройством отображения информации (монитором).

По мере развития ПК видеоадаптеры стали реализовывать аппаратное ускорение 2D- и SD-графики, обработку видеосигналов, прием телевизионных сигналов и многое другое. Современный видеоадаптер, называемый Super VGA (Super Video Graphics Adapter), или SVGA, представляет собой универсальное графическое устройство.

Видеоадаптер определяет следующие характеристики видеосистемы:

  • максимальное разрешение и максимальное количество отображаемых оттенков цветов;
  • скорости обработки и передачи видеоинформации, определяющие производительность видеосистемы и ПК в целом.

Кроме того, в функцию видеоадаптера включается формирование сигналов горизонтальной и вертикальной синхронизации, используемых при формировании растра на экране монитора.

Принцип действия видеоадаптера состоит в следующем.

Процессор формирует цифровое изображение в виде матрицы NxM n-разрядных чисел и записывает его в видеопамять. Участок видеопамяти, отведенный для хранения цифрового образа текущего изображения (кадра), называется кадровым буфером, или фрейм-буфером.

Видеоадаптер последовательно считывает (сканирует) содержимое ячеек кадрового буфера и формирует на выходе видеосигнал, уровень которого в каждый момент времени пропорционален значению, хранящемуся в отдельной ячейке. Сканирование видеопамяти осуществляется синхронно с перемещением электронного луча по экрану ЭЛТ. В результате яркость каждого пиксела на экране монитора пропорциональна содержимому соответствующей ячейки памяти видеоадаптера.

По окончании просмотра ячеек, соответствующих одной строке растра, видеоадаптер формирует импульсы строчной синхронизации, инициирующие обратный ход луча по горизонтали, а по окончании сканирования кадрового буфера формирует сигнал, вызывающий движение луча снизу вверх. Таким образом, частоты строчной и кадровой развертки монитора определяются скоростью сканирования содержимого видеопамяти, т.е. видеоадаптером.

1. Режимы работы видеоадаптера