RAMDAC — цифроаналоговый преобразователь, выполняющий преобразование цифровых сигналов ПК в сигналы, формирующие изображение на мониторе.
Интегральным показателем качества видеоадаптеров, сфера применения которых — в основном трехмерные игры, является частота смены кадров (frame per second — fps). В каждой трехмерной игре этот показатель будет различным.
Качество современного видеоадаптера можно считать удовлетворительным, если в игре Quake при разрешении 1600x1200 он обеспечивает 60 — 70 fps.
Другим показателем качества видеоадаптера является максимальное число обрабатываемых элементарных простых объектов (многоугольников, треугольников) в секунду. Эти значения для отдельных видеоадаптеров составляют 800— 1200 млн/с.
Объем оперативной памяти видеоадаптеров достигает 128 Мбайт. Типы памяти, используемой в видеоадаптерах, аналогичны модификациям обычной оперативной памяти. В недорогих моделях используется память SDRAM или ее более быстрая графическая модификация SGRAM со временем доступа 7 — 8 нс. Более совершенные модели оснащены памятью DDR SDRAM со временем доступа 5 — 6 нс.
Частота работы графического чипа и памяти видеоадаптера может быть одинаковой или разной. Например, базовая частота чипа самых популярных видеокарт 2000 г. составляла 166 — 250 МГц, а частота памяти — 140— 180 МГц.
Частота RAMDAC определяет качество видеоадаптера. Большинство современных видеокарт имеют частоту RAMDAC в диапазоне 250 — 400 МГц.
Тип интерфейса с шиной ввода/вывода оказывает существенное влияние на быстродействие всей видеосистемы. Для эффективной работы с трехмерной графикой современные видеоадаптеры комплектуются интерфейсом AGP. AGP4x — суперскоростной режим, обеспечивающий скорость обмена 1,06 Гбайт/с.
На компьютерном рынке наиболее популярны видеокарты на чипсете собственной оригинальной разработки, предлагаемые фирмами ATI, Matrox и 3dfx, в то время как чипсеты фирмы Nvidia используются в составе видеокарт других производителей. Видеокарты ATI предпочтительнее в мультимедийных комплексах, производства 3dfx — в игровых приложениях, а фирма Matrox специализируется на двухмерной графике.
Для поддержки спецэффектов в игровых приложениях (анти-алиасинга, имитации тумана, пламени, ряби на водной глади) в процессор видеоадаптера все чаще встраивают специальный блок «трансформации и освещения» (Т&Т), который позволяет получить высокое качество игрового изображения.
Для приема телевизионных сигналов и вывод их на монитор в плату видеоадаптера встраивают TV-тюнер. Встроенные TV-тюнеры не отличаются высоким качеством изображения, которое может воспроизводиться в небольшом окне Windows. TV-тюнеры, устанавливаемые в отдельный слот компьютера, обеспечивают полноэкранный режим и высокое качество изображения, обеспечивая при этом выполнение дополнительных сервисных функций: телефонные переговоры через Internet, прослушивание радио, прием спутникового телевидения при наличии спутниковой антенны.
Внешние TV-тюнеры, подключаемые через порт USB, обеспечивают воспроизведение телепередач в «оконном» режиме на экране монитора.
Контрольные вопросы
1. Каковы назначение и принцип действия видеоадаптера.
2. Какие существуют режимы работы видеоадаптера. Их особенности.
3. Охарактеризовать основные типы видеоадаптеров.
4. Каково назначение 2D и 3D акселераторов?
5. Каковы основные принципы синтеза трехмерного изображения?
6. Привести основные характеристики видеоадаптера.
Тема 4.4. Устройства обработки и воспроизведения аудиоинформации.
План.
1. Звуковая система ПК
Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического средства информатизации.
Звуковая система ПК — комплекс программно-аппаратных средств, выполняющих следующие функции:
· запись звуковых сигналов, поступающих от внешних источников, например, микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске;
· воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников);
· воспроизведение звуковых компакт-дисков;
· микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников;
· одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);
· обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;
· обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного — 3D-Sound) звучания;
· генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;
· управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.
Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК, а также устройства записи и воспроизведения аудиоинформации (акустическую систему). Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.
Классическая звуковая система, как показано на рис. 4.23, содержит:
• модуль записи и воспроизведения звука;
• модуль синтезатора;
• модуль интерфейсов;
• модуль микшера;
• акустическую систему.
Рис. 4.23. Структура звуковой системы ПК.
Первые четыре модуля, как правило, устанавливаются на звуковой карте. Причем существуют звуковые карты без модуля синтезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной микросхемы. Таким образом, Chipset звуковой системы может содержать как несколько, так и одну микросхему.
Конструктивные исполнения звуковой системы ПК претерпевают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.
Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не меняются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».
2. Модуль записи и воспроизведения
Модуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access — канал прямого доступа к памяти).
Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в пространстве.
Запись звука — это сохранение информации о колебаниях звукового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и цифровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.
Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непрерывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота — высоту звукового тона, постольку для сохранения достоверной информации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового давления.
На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК оперирует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая система, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обработки сигнала с помощью ПК необходимо обратное преобразование цифрового сигнала в аналоговый.
Аналого-цифровое преобразование представляет собой преобразование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала представлена на рис. 4.24.
Рис. 4.24. Схема аналого-цифрового преобразования звукового сигнала
Предварительно аналоговый звуковой сигнал поступает на аналоговый фильтр, который ограничивает полосу частот сигнала.
Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в большинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.