Все инфракрасные беспроводные сети используют для передачи данных инфракрасные лучи. В подобных системах необходимо генерировать очень-сильный сигнал, так как в противном случае значительное влияние будут оказывать другие источники, например свет из окна.
Этот способ позволяет передавать сигналы с большой скоростью, поскольку инфракрасный свет имеет широкий диапазон частот. Инфракрасные сети способны нормально функционировать на скорости 10 Мбит/с.
Существует четыре типа инфракрасных сетей.
• сети прямой видимости:
В таких сетях «передача возможна лишь в случае прямой видимости: между передатчиком и приемником.
• Сети на рассеянном инфракрасном излучении.
При этой технологии сигналы отражаясь от стен и потолка, в конце концов достигают приемника. Эффективная область действия ограничена примерно 30 м (100 футами), и скорость передачи невелика (из-за неравномерности сигнала).
• Сети на отраженном инфракрасном излучении.
;В этих сетях оптические трансиверы, расположенные рядом с компьютером, передают сигналы. В определенное место, откуда они пересылаются соответствующему компьютеру.
• Модулированные оптические сети.
Эти инфракрасные беспроводные сети соответствуют жестким требованиям мультимедийной среды и практически не уступают в скорости кабельным сетям. Хотя скорость инфракрасных сетей, и удобство их использования очень привлекательны, возникают трудности при передаче сигналов на расстояние более 30 м (100 футов). К тому же такие сети подвержены помехам со стороны сильных источников света, которые есть в большинстве организаций.
3.4.3 Лазерные технологии организации сетей
Лазерная технология, похожа на инфракрасную тем, что требует прямой видимости между передатчиком и приемником. Если по каким-либо причинам луч будет прерван, то это прервет и передачу.
3.4.4 Радиопередача в узком диапазоне (одночастотная передача)
Этот способ напоминает вещание обыкновенной радиостанции. Пользователи, настраивают передатчики и приемники на определенную частоту. При этом, прямая; видимость необязательна, площадь вещания составляет около 46 500 м2 (500 000 квадратных футов). Однако, поскольку используется, сигнал высокой частоты, он не проникает через металлические или железобетонные преграды.
Доступ к такому способу связи осуществляется через поставщика услуг. Связь относительно медленная (около 4,8 Мбит/с).
3.4.5 Радиопередача в рассеянном спектре
При этом способе сигналы передаются, на нескольких частотах, что позволяет избежать проблем, присущих одночастотной передаче.
Доступные частоты разделены на каналы. Адаптеры в течение заданного промежутка времени настроены на определенный канал, после чего переключаются на другой. Переключение всех компьютеров в сети происходит синхронно. Данный способ передачи обладает некоторой «встроенной» защитой: чтобы подслушать передачу, необходимо знать алгоритм переключения каналов.
Если необходимо усилить защиту данных от несанкционированного доступа, применяют кодирование.
Скорость передачи в 250 Кбит/с (килобит в секунду) относит данный: способ к разряду самых медленных. Но есть сети, которые передают данные со скоростью до 2 Мбит/с на расстояние до 3,2 км (2 миль) — на открытом пространстве и до 120 м (393 футов) — внутри здания.
Это тот случай, когда технология позволяет получить по-настоящему беспроводную сеть.
Данный способ передачи несколько выходит за рамки существующего определения сети. Технология передачи «точка-точка» предусматривает обмен данными только между двумя компьютерами, а не между несколькими компьютерами и периферийными устройствами. Дли того: чтобы организовать сеть с беспроводной; передачей, необходимо использовать дополнительные компоненты, такие, как одиночные трансиверы и хост-трансиверы.
3.4.7 Многоточечное беспроводное соединение
Компонент, называемый беспроводным мостом (wireless bridge), помогает установить связь между зданиями без помощи кабеля. Если обычный мост служит людям для перехода с одного берега реки на другой, то беспроводной мост прокладывает для данных путь между двумя зданиями. Мост AIRLAN/Bridge Plus, например, использует технологию радиопередачи в рассеянном спектре для создания магистрали, соединяющей две; ЛВС. Расстояние между ними, в зависимости от условий, может достигать 5 км (3 мили). Стоимость такого устройства не покажется чрезмерной, поскольку арендовать линии связи больше не надо.
3.5 Назначение платы сетевого адаптера
Платы сетевого адаптера выступают в качестве физического интерфейса между компьютером и средой передачи. Платы вставляются в слоты расширения всех сетевых компьютеров и серверов или интегрируются на материнскую плату.
Для того чтобы обеспечить физическое соединение между компьютером и сетью, к соответствующему разъему или порту, платы подключается сетевой кабель.
Назначение платы сетевого адаптера:
· подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю;
· передача данных другому компьютеру;
· управление потоком данных между компьютером и кабелем.
Плата сетевого адаптера, кроме того, принимает данные из кабеля и переводит их в форму, понятную центральному процессору компьютера.
Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ.
Перед тем как послать данные в сеть, плата сетевого адаптера должна перевести их из формы, понятной компьютеру, в форму, в которой они могут передаваться по сетевому кабелю.
Внутри компьютера данные передаются по шинам. Шина — это несколько проводников, расположенных параллельно друг другу. Так как линий несколько, то и биты данных передаются по ним блоками, а не последовательно.
В первых персональных компьютерах IBM использовались 8-разрядные шины: они могли передавать блоки по 8 битов данных. IBM PC/AT® имеет 16-разрядную шину, — это означает, что она способна передавать сразу 16 бит. Большинство современных компьютеров оснащены уже 64-разрядной шиной. Часто говорят, что данные по шине компьютера передаются параллельно (parallel), так как 16 битов или 64 бита движутся параллельно друг другу. Представьте, что 16-разрядная шина — это 16-полосная автострада, по которой рядом (параллельно) едут 16 машин, каждая из которых перевозит один бит.
В сетевом кабеле данные должны перемещаться в виде потока битов. При этом говорят, что происходит последовательная (serial) передача, потому что биты следуют друг за другом. Иными словами, кабель — это дорога с одной полосой. По таким «дорогам» данные в каждый момент времени движутся в одном направлении.
Плата сетевого адаптера принимает параллельные данные и организует их для последовательной, побитовой, передачи. Этот процесс завершается переводом цифровых данных компьютера в электрические и оптические сигналы, передающиеся по сетевым кабелям. Отвечает за это преобразование трансивер (приемопередатчик). Плата сетевого адаптера, помимо преобразования данных, должна указать свое местонахождение, или адрес, чтобы ее могли отличить от остальных плат,
Сетевые адреса (network address) находятся в ведении комитета IEEE (Institute of Electrical and Electronics Engineers, Inc). Этот комитет закрепляет за каждым производителем плат сетевого адаптера некоторый интервал адресов. Затем каждый производитель записывает в ПЗУ платы ее уникальный сетевой адрес.
При приеме данных от компьютера и подготовке их к передаче по сетевому кабелю плата сетевого адаптера выполняет и другие действия:
1. Компьютер и плата сетевого адаптера должны быть связаны друг с другом, чтобы осуществлять передачу данных от компьютера к плате. Если плата может использовать прямой доступ к памяти, компьютер выделяет ей некоторую область своей памяти.
2. Плата сетевого адаптера запрашивает у компьютера данные.
3. Шина компьютера передает данные из его памяти плате сетевого адаптера.
Часто данные поступают быстрее, чем их способна передать плата сетевого адаптера, поэтому временно они помещаются в буфер.
3.5.2 Передача и управление данными
Перед тем как послать данные в сеть, плата сетевого адаптера проводит электронный диалог с принимающей платой, во время которого они «обговаривают»:
• максимальный размер (блока передаваемых данных);
• объем данных, передаваемых без подтверждения о получении;
• интервалы между передачами блоков данных;
• интервал, в течение которого необходимо послать подтверждение;
• объем данных, который может принять каждая плата без переполнения буфера;
• скорость передачи.
Если новой {более сложной и быстрой) плате приходится взаимодействовать со старой (медленной) платой, то они должны найти общую для них обеих скорость передачи. Схемы современных плат сетевого адаптера позволяют им приспособиться к медленной скорости старых плат.
Каждая плата оповещает другую о своих параметрах, принимая «чужие» параметры и подстраиваясь к ним. После того как все детали определены, платы начинают обмен данными.
Работа сети заключается в передаче данных от одного компьютера к другому. В этом процессе можно выделить следующие задачи:
• распознать данные;
• разбить данные на управляемые блоки;
• добавить информацию к каждому блоку, чтобы:
• указать местонахождение данных;
• указать получателя;
• добавить информацию синхронизации и информацию для проверки ошибок;
• поместить данные в сеть и отправить их по заданному адресу.
Сетевая операционная система при выполнении всех задач следует строгому набору процедур. Эти процедуры называются протоколами или правилами поведения. Протоколы регламентируют каждую сетевую операцию.