Смекни!
smekni.com

Кафедра высшей математики повторные испытания (стр. 3 из 11)

25. Известно, что 70% родившихся ягнят обычно имеют хорошие наследственные признаки. Какова вероятность того, что из восьми родившихся ягнят хорошие наследственные признаки имеют не более шести?

26. Появление колонии микроорганизмов данного сорта в определенных условиях оценивается с вероятностью 0,8. Какова вероятность того, что из 5 случаев эта колония микроорганизмов появится не менее 4 раз?

27. В хлопке 10% коротких волокон. Какова вероятность того, что в наудачу взятом пучке из 5 волокон окажется не более 2 коротких волокон?

28. При массовом производстве шестерен вероятность брака при штамповке равна 0,1. Какова вероятность того, что из 6 наудачу взятых шестерен не более одной окажется бракованной?

29. Для уничтожения танка требуется не менее двух попаданий. Найти вероятность уничтожения танка десятью выстрелами, если вероятность попадания в танк при каждом выстреле равна 0,4.

30. Всхожесть семян равна 95%. Отбирается 6 зерен. Какова вероятность того, что они дадут не менее 5 всходов?

31. Вероятность выигрыша по облигации займа за все время его действия равна 0,25. Какова вероятность того, что некто, приобретя 8 облигаций, выиграет не менее чем по 6 из них?

32. Найти вероятность того, что событие А появится в пяти независимых испытаниях не менее двух раз, если в каждом испытании вероятность появления события равна 0,3.

33. В некоторой семье имеется четверо детей. Если принять рождение мальчика с вероятностью 0,5, то какова вероятность того, что в семье будет не менее двух мальчиков?

34. Прибор состоит из четырех элементов, включенных параллельно. Вероятность безотказной работы каждого элемента равна 0,8. Для безаварийной работы прибора достаточно, чтобы хотя бы два элемента были исправны. Какова вероятность того, что прибор будет работать безаварийно?

35. Вероятность рождения мальчика равна 0,51. Какова вероятность того, что в семье с 4 детьми мальчиков будет больше, чем девочек?


Задание 3

Решить задачу, используя формулу для нахождения наивероятнейшего числа.

1. Товаровед осматривает 30 образцов товаров. Вероятность того, что каждый из образцов будет признан годным к продаже, равна 0,7. Найти наивероятнейшее число образцов, которые товаровед признает годными к продаже.

2. Магазин получил 50 деталей. Вероятность наличия бракованной детали в этой партии равна 0,05. Найти наивероятнейшее число нестандартных (бракованных) деталей в этой партии.

3. Вероятность обращения в поликлинику каждого человека в период эпидемии гриппа равна 0,8. Сколько человек проживает в районе, если в поликлинику обратилось 100 человек?

4. Известно, что вероятность прорастания семян данной партии пшеницы равна 0,95. Сколько семян следует взять из этой партии, чтобы наивероятнейшее число взошедших семян равнялось 100?

5. Вероятность нарушения точности в сборке прибора составляет 0,2. Найти наиболее вероятное число точных приборов в партии из 8 приборов.

6. Сколько следует произвести повторных испытаний, чтобы наивероятнейшее число появлений некоторого события оказалось равным 21, если вероятность появления события в отдельном испытании равна 0,8?

7. Испытываются 32 элемента некоторого устройства. Вероятность того, что элемент выдержит испытание, равна 0,8. Найдите наивероятнейшее число элементов, которые выдержат испытание.

8. Отдел технического контроля проверяет партию из 10 деталей. Вероятность того, что деталь стандартна, равна 0,75. Найти наивероятнейшее число деталей, которые будут признаны стандартными.

9. Товаровед осматривает 24 образца товаров. Вероятность того, что каждый из образцов будет признан годным к продаже, равна 0,6. Найти наивероятнейшее число образцов, которые товаровед признает годными к продаже.

10. Найти наивероятнейшее число правильно набитых перфораторщицей перфокарт среди 19 перфокарт, если вероятность того, что перфокарта набита неверно, равна 0,1.

11. Два стрелка одновременно стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,8, а для второго – 0,6. Найти наивероятнейшее число залпов, при которых оба стрелка попадут в мишень, если будет произведено 15 залпов.

12. Вероятность появления события в каждом из независимых испытаний равна 0,3. Найти число испытаний, при котором наивероятнейшее число появлений события в этих испытаниях будет равно 30.

13. Вероятность появления события в каждом из независимых испытаний равна 0,7. Найти число испытаний, при котором наивероятнейшее число появлений события равно 20.

14. Чему равна вероятность наступления события в каждом из 39 независимых испытаний, если наивероятнейшее число наступлений события в этих испытаниях равно 25.

15. Прибор состоит из 5 независимо работающих элементов. Вероятность отказа элемента в момент включения прибора равна 0,2. Найти наивероятнейшее число отказавших приборов.

16. Батарея произвела пять выстрелов по объекту. Вероятность попадания в объект при одном выстреле равна 0,2. Найти наивероятнейшее число попаданий.

17. Пусть вероятность того, что покупателю необходима обувь 41-го размера, равна 0,2. Найти наивероятнейшее число покупателей, которым потребуется обувь указанного размера, если в магазине находится 15 покупателей.

18. Пусть вероятность того, что в течение гарантийного срока телевизор потребует ремонта, равна 0,1. Найти наивероятнейшее число телевизоров потребовавших ремонта среди 50 проданных магазином.

19. Пусть вероятность того, что пассажир опоздает к отправлению поезда, равна 0,02. Найти наиболее вероятное число опоздавших из 855 пассажиров.

20. Пусть вероятность того, что денежный автомат при опускании одной монеты сработает неправильно, равна 0,03. Найти наивероятнейшее число случаев правильной работы автомата, если будет опущено 150 монет.

21. Оптовая база обслуживает 12 магазинов. От каждого из них заявка на товары на следующий день может поступить с вероятностью 0,3. Найти наивероятнейшее число заявок на следующий день.

22. Вероятность того, что денежный автомат при опускании одной монеты сработает правильно, равна 0,97. Сколько нужно опустить монет, чтобы наивероятнейшее число случаев правильной работы автомата было равно 100?

23. Вероятность рождения мальчика равна 0,5. Найти наивероятнейшее число мальчиков в семье из 7 детей.

24. На автобазе имеется 12 автомашин. Вероятность выхода на линию для каждой из них равна 0,8. Найти наивероятнейшее число вышедших на линию машин.

25. При установившемся технологическом процессе происходит 10 обрывов нити на 100 веретен в час. Определить наивероятнейшее число обрывов нити на 80 веретенах в течение часа.

26. Сколько нужно посеять семян, всхожесть которых 80%, чтобы наивероятнейшее число не взошедших семян было равно 40?

27. 30% изделий данного предприятия – это продукция высшего сорта. Каково наивероятнейшее число изделий высшего сорта поступило в магазины в партии из 300 изделий.

28. В колхозном саду посажено 7 саженцев вишни. Вероятность прижиться для каждого из саженцев одинакова и равна 0,9. Найти наивероятнейшее число прижившихся саженцев.

29. При штамповке металлических клемм получается в среднем 90% годных. Найти наивероятнейшее число годных клемм из произведенных 900.

30. Пусть вероятность нарушения герметичности банки консервов равна 0,02. Найти наивероятнейшее число разгерметизированных банок среди произведенных 2000.

31. Вероятность обращения в поликлинику каждого человека в период эпидемии гриппа равна 0,8. Найти наивероятнейшее число обратившихся в поликлинику, если в районе проживает 1000 человек.

32. Сколько нужно взять деталей, чтобы наивероятнейшее число годных было равно 50, если вероятность того, что наудачу взятая деталь будет бракованной, равна 0,1?

33. Вероятность попадания в цель при одном выстреле равна 0,85. Стрелок сделал 25 независимых выстрелов. Найти наивероятнейшее число попаданий.

34. Два стрелка одновременно стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,6. Найти наивероятнейшее число залпов, при которых оба стрелка попадут в мишень, если будет произведено 15 залпов.

35. Пусть проводится серия из шести испытаний, состоящих в бросании монеты. Каково наивероятнейшее число появления герба?

Задание 4

Решить задачу, используя локальную теорему Муавра – Лапласа.

1. Монета брошена 40 раз. Найти вероятность того, что герб выпадет в 25 случаях.

2. Средний процент работы кинескопа телевизора в течение гарантийного срока равен 12. Вычислить вероятность того, что из 46 наблюдаемых телевизоров 6 выдержат гарантийный срок.

3. Определить вероятность того, что среди 400 проб руды окажется 275 проб с промышленным содержанием металла, если вероятность промышленного содержания металла одинакова для каждой пробы и равна 0,7.

4. Вероятность того, что перфокарта набита неверно, равна 0,2. Найти вероятность того, что среди 900 набитых перфокарт окажется 720 набитых правильно.

5. Вероятность попадания в цель при одном выстреле равна 0,4. Найти вероятность 100 попаданий из 320 выстрелов.

6. Найти вероятность того, что 500 посеянных семян не взойдет 130, если всхожесть семян оценивается вероятностью 0,75.

7. Вероятность рождения мальчика равна 0,515. Какова вероятность того, что среди 1000 новорожденных окажется 480 девочек?

8. Вероятность получения с конвейера изделия первого сорта равна 0,9. Определить вероятность того, что из взятых на проверку 600 изделий 530 будут первого сорта.

9. Какова вероятность того, что в 75 испытаниях, состоящих в извлечении карты из полной колоды, бубновая карта появится 10 раз?

10. Найти вероятность того, что событие А наступит 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.