Смекни!
smekni.com

2. Краткое описание конструкции (стр. 1 из 6)

Содержание

стр.

1. Введение

4

2. Краткое описание конструкции

5

2.1. Технические характеристики проектируемого ЭМП

5

2.2. Обоснование выбора материалов

6

2.3. Обоснование распределения передаточного отношения i0, при критерии проектирования – минимум погрешности

8

3. Расчёты параметров конструкции

8

3.1. Подбор двигателя

9

3.2. Кинематический расчёт

13

3.3. Расчёт моментов

15

3.4. Расчёты на прочность механических передач

16

а) определение модулей зубчатых колес

13

б) определение основных размеров зубчатых колес

17

3.5. Расчёт валов и осей

19

3.6. Расчёт и подбор подшипников

25

3.7. Точностной расчет

28

3.8. Расчёт параметров муфты (расчёт пружины).

31

III. Список использованной литературы.

33


1. Введение [2, ч.1, с. 17-20]

Электромеханическим приводом (ЭМП) называется устройство, состоящее из двух основных частей: электродвигателя, осуществляющего преобразование электрической энергии в механическую, и редуктора, связывающего электродвигатель с рабочим органом. Рабочий орган создаёт нагрузку на выходном или рабочем валу редуктора. Блок-схема ЭМП показана на рис. 1, где 1 ¾ электродвигатель; 2 ¾ редуктор; 3 ¾ рабочий орган. ЭМП в литературе часто называют исполнительным механизмом, так как именно он приводит в действие рабочий орган.

Рис. 1

Следящий электромеханический привод применяют в измерительных приборах, основанных на автоматическом компенсационном методе измерения, в системах автоматического регулирования промышленными процессами, в автопилотах, в радиолокационных установках для поиска и слежения за перемещающимися объектами, в автоматических прицелах, в следящих системах дистанционных передач и т. д.

В следящих приводах помимо элементов управления, блокировки и сигнализации имеются датчики обратной связи по углу и скорости, элементы дистанционных передач, отсчётные механизмы высокой точности.

Следящий привод работает в условиях постоянного реверса, поэтому здесь на первый план выдвигаются инерционные (динамические) нагрузки. Вследствие этого, к приводу предъявляются требования малой инерционности, уменьшения момента трогания (начального момента трения), снижения мёртвого хода, увеличения кинематической точности редуктора, виброустойчивости при разных режимах работы.

Во всех случаях проектирования ЭМП, а при проектировании привода летательных аппаратов в особенности, необходимо стремиться к снижению габаритов и массы механизмов.

Предполагаемый характер производства при выпуске проектируемого изделия – серийное.

2. Краткое описание конструкции [2, ч.1, с. 64-65; 15, с.17]

2.1. Технические характеристики проектируемого ЭМП

МН max , Н×м

wнmax, рад/с

w нmax, рад/с2

J н, кг×м2

Uп, В

Т, часы

1,5

1

1

0,25

12

750

Сеть постоянного тока.

где:

МН max — максимальный момент нагрузки на выходном валу привода (момент от исполнительного органа);

wн max — максимальная угловая скорость вращения выходного вала;

w¢Н MAX — максимальное угловое ускорение выходного вала;

JН — момент инерции элемента нагрузки, связанного с выходным валом;

Uп — напряжение питания сети;

Т — срок службы;

2.2. Обоснование выбора материалов ([5, c. 35-36; 6, c. 65-68; 9 с. 10-11; 10,11]).

Материал выбирают с учётом назначения передачи, характера действующей нагрузки, условий эксплуатации (окружной скорости, состояния среды), массы, габаритов и стоимости.

Желательно количество материалов, используемых в разрабатываемом приводе, резко ограничить.

При небольших окружных скоростях V (до 3 м/с) для изготовления мелкомодульных цилиндрических и конических передач применяют конструктивные стали 35, 40, 45, 50 (по ГОСТ 1050-74) как в сыром, так и в термоулучшенном виде (HRC 28..32). При повышенных окружных скоростях применяют легированные стали 40Х, 45Х, 2Х13, 40ХН и другие (по ГОСТ 4543-71).

Зубчатые колёса подвергают закалке до НВ 300. Колёса с повышенной антикоррозионной устойчивостью изготавливают из стали ЭИ474 (ГОСТ 4543-71), а с повышенной износостойкостью ¾ из стали 38ХМЮА (ГОСТ 4543-71) при закалке до НВ 260, азотировании НВ 500. Для нагруженных трибок применяют также стали У8А, У10А по ГОСТ 1435-74 с закалкой до HRC 40..64, стали 2Х13, 4Х13 в термоулучшенном виде (HRC 28..32). Для малонагруженных зубчатых передач применяют бронзы БрКМц 3-1Т, БрАМц 9-2Т, БрОЦ 4-3Т, БрОФ 6,5-0,15Т, латуни ЛС59-1Т (по ГОСТ 15527-71), а также алюминиевые сплавы Д16Т, Д1АТ и ВТ95Т1 (по ГОСТ 4784-74) при требованиях малой массы, момента инерции, частоты вращения менее 1000 об/мин.

Для прирабатывающихся зубчатых передач (твёрдость рабочих поверхностей колёс НВ=350 (1 НВ » 10 HRC)) рекомендуется для выравнивания срока службы назначать для зубчатых колёс разные материалы, причём твёрдость шестерни должна быть на 20..30 единиц больше твёрдости колеса НВ1=НВ2 + 20..30.

Для цилиндрических прямозубых шестерни и колеса рекомендуются следующие пары материалов соответственно: при V до 15 м/с сталь 15Х ¾ сталь 50, 55; сталь 55 ¾ сталь 45, 50; сталь 45 ¾ бронза БрАЖ9-4; при V до 6 м/с сталь 45 ¾ сталь 35; сталь15 ¾ алюминиевый сплав Д16Т.

Для неприрабатывающихся зубчатых передач с твёрдыми рабочими поверхностями зубьев обоих зубчатых колёс (твёрдость HRC > 45) обеспечивать разность твёрдости зубьев шестерни и колеса не требуются.

Стали углеродистые качественные (по ГОСТ 1050-74) имеют более жёсткие допуски на химический состав и механические характеристики, чем стали углеродистые общего назначения. Это позволяет получить тонкую градацию технологических свойств стали и гарантировать заданное качество изготавливаемых из неё деталей.

Низкоуглеродистые стали этой группы (05кп, 08кп, 08пс, 08, 10кп, 10пс, 10, 15кп, 15пс, 15, 20кп, 20пс, 20, 25) обладают высокой пластичностью и свариваемостью. Из листовой стали этих марок можно изготавливать штамповые и свариваемые кожухи, детали глубокой втяжки, корпуса, детали, получаемые развальцовкой и гибкой, рычаги кронштейны и тому подобное.

При цементации и цианировани эти стали приобретают высокую твёрдость поверхности, что хорошо сохраняет детали из них при работе на истирание (различные пальцы шарнирных соединений, кулачки, зубчатые звёздочки, детали неответственных направляющих и каретки).

Стали 40 и 45 обычно применяют как улучшаемые стали, обеспечивающие высокую твёрдость поверхности детали и высокие механические характеристики. Из этих сталей для приборов можно изготовлять зубчатые передачи.

Выберем для колёс и трибок материал сталь 40Х, для муфты - сталь 40Х, а для платы корпуса – алюминиевый сплав АЛ2.

2.3. Обоснование распределения передаточного отношения i0, при критерии проектирования – минимум погрешности [4, с.19; 2, ч.1, с. 57].

Одним из главных вопросов кинематических расчётов является распределение общего передаточного отношения i0 по ступеням передачи, поскольку от него зависят основные характеристики редуктора и привода в целом. В литературе можно встретить рекомендации по решению этой задачи при условии минимизации массы, габаритов, инерционных и точностных характеристик передачи привода.

Для снижения суммарной погрешности передачи надо увеличивать передаточное отношение тихиходной ступени, уменьшать число ступеней, повышать точность изготовления и монтажа тихоходной ступени.

3. Расчеты параметров конструкции

3.1. Подбор двигателя.

При подборе электродвигателя руководствуются следующими показателями: родом тока, номинальным напряжением питания, мощностью и частотой вращения, номинальным и пусковым моментом, жёсткостью (мягкостью) характеристики, регулировочными свойствами, стойкостью к внешним воздействиям. При этом стремятся выбрать наиболее простой по конструкции и управлению электродвигатель, надёжный и имеющий минимальную стоимость и массу, с высоким КПД. Также он должен обеспечивать выполнение приводом его функций.

Задача выбора электродвигателя следящего привода достаточно точно может быть решена при наличии статических характеристик конкретного привода. Чаще всего такие характеристики отсутствуют. В этом случае потребную мощность определяют исходя из её максимального значения. По найденному значению мощности по каталогу определяют тип двигателя.

Поскольку в приводах следящих систем применяются управляемые двигатели, то остановим свой выбор на двигателях серий ДИД, ДГ, СЛ, ДПР, ДПМ ([3], с 30-44). Учет напряжения питания и срока службы значительно сужает этот круг. Исключаются двигатели переменного тока ДИД и ДГ, а также постоянного – СЛ.