Смекни!
smekni.com

П. П. Гайденко Научная рациональность и философский разум (стр. 21 из 112)

-98-

вения — из одного «теперь» в другое «теперь»; в «теперь» невозможно ни движение, ни покой. Значит, двигаться и изменяться может только то, что само имеет величину (а значит, делимо); только такие объекты и подлежат изучению физики — науки о движении и изменении.

Аристотелевское учение о непрерывности имеет также непосредственный выход в математику. Принцип непрерывности был введен в математику старшим современником Аристотеля Евдоксом в виде так называемой «аксиомы непрерывности», которую мы находим среди определений V книги «Начал» Евклида, где излагается теория отношений Евдокса7.

Четвертое определение V книги «Начал» гласит: «Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга»8.

Вот как формулирует Аристотель евдоксову аксиому непрерывности, недвусмысленно показывая, что альтернативой ее будет парадокс Зенона «дихотомия»: «Если, взявши от конечной величины определенную часть, снова взять ее в той же пропорции, т.е. не ту же самую величину, которая взята от целого, то конечную величину нельзя пройти до конца; если же настолько увеличивать пропорцию, чтобы брать всегда одну и ту же величину, то пройти можно, так как конечную величину всегда можно исчерпать любой определенной величиной» (Физика, III, 6, 206b). Как видим, аристотелевская физика, построенная на основе принципа непрерывности, внутренне связана с математическим мышлением, как оно воплотилось в «Началах» Евклида.

2. Понятие бесконечного у Аристотел

Аристотелева теория непрерывности родилась из попытки решить парадоксы бесконечности; проблема бесконечности — одна из ключевых в онтологии и натурфилософии Стагирита. Приступая к анализу понятия бесконечности, он предупреждает, что здесь приходится ходить по очень зыбкой почве, рискуя постоянно натолкнуться на парадоксы и противоречия: ибо «много невозможного следует и за отрицанием его (бесконечного. — П.Г.) существова

-99-

ния и за признанием» (Физика, III, 4, 203Ь). Но, несмотря на эти затруднения, возникающие при рассмотрении бесконечного, философия, по мысли Аристотеля, не может обойтись без такого рассмотрения. «А что бесконечное существует, — пишет Аристотель, — уверенность в этом скорее всего возникает у исследователей из пяти оснований: из времени (ибо оно бесконечно), из разделения величин (ведь и математики пользуются бесконечным); далее, что только таким образом не иссякнут возникновение и уничтожение, если будет бесконечное, откуда берется возникающее. Далее, из того, что конечное всегда граничит с чем-нибудь, так что необходимо, чтобы не было никакого предела, раз необходимо, чтобы оно всегда граничило с другим. Но больше всего и главнее всего — что доставляет для всех затруднение — на том основании, что мышление не останавливается: и число кажется бесконечным, и математические величины, и то, что лежит.за небом; а если лежащее за небом бесконечно, то кажется бесконечным тело и существует множество миров...» (Физика, III, 4, 203Ь). Интересно, что. философ видит именно в бесконечности мышления («мышление не останавливается») одно из главных оснований для принятия бесконечного: деятельность мышления служит источником того, что бесконечными представляются и число, и величина, и протяженность космоса.

Однако в вопросе о бесконечном, говорит Аристотель, доверять мышлению нельзя; поэтому ко всем перечисленным основаниям, побуждающим принять бесконечное, надо подойти критически. Аристотель начинает исследование с критики платоновского и пифагорейского понятий бесконечного. И Платон, и пифагорейцы рассматривают бесконечное как сущность, а не свойство, не придикат чего-нибудь другого. В отличие от них натурфилософы считают бесконечное предикатом природных элементов, в зависимости от того, какой элемент каждый из них принимает за первоначало — воду, воздух или огонь. Аристотель не соглашается признать бесконечное ни сущностью, ни предикатом (сущности). Характерно возражение Аристотеля против платоновско-пифагорейской трактовки бесконечного как сущности: если принять, что бесконечное является сущностью, то оно должно мыслиться как неде

-100-

лимое. «...Если бесконечное — сущность и не относится к какому-нибудь подлежащему, — говорит Аристотель, — то «быть бесконечным» и «бесконечность» — одно и то же, следовательно, оно или неделимо или делимо до бесконечности, а быть одному и тому же предмету многими бесконечными невозможно. Однако, если оно сущность и начало, то как часть воздуха остается воздухом, так и часть бесконечного — бесконечным. Следовательно, оно неразделимо и неделимо. Однако невозможно бесконечному существовать актуально, ведь ему необходимо быть количеством. Бесконечное, следовательно, существует по совпадению... Поэтому нелепости утверждают те, которые говорят так же, как пифагорейцы: они одновременно делают бесконечное сущностью и делят его на части» (Физика, III, 5, 204а)9.

Аристотель считает, что платоники и пифагорейцы, рассматривая бесконечное как «сущность», должны мыслить его как нечто неделимое, а тем самым — как актуально бесконечное. Если же мыслить бесконечное как актуальное, то, согласно Аристотелю, невозможно объяснить такой «вид» бесконечного, как время и величина (а тем самым и движение), которые являются, по выражению Аристотеля, «количествами». Что же представляет собой этот вид бесконечного? В чем его отличие от актуально бесконечного? В том, что «будучи проходимо по природе», это бесконечное «не имеет конца прохождения или предела» (Физика, III, 4, 204а). Это — бесконечное потенциально, бесконечное в возможности, а не в действительности, осуществляемое, а не осуществленное, незавершенное и не могущее быть никогда завершенным. В этом смысле Аристотель говорит, что бесконечное — это «не то, вне чего ничего нет, а то, вне чего всегда есть что-нибудь» (Физика, III, 6, 206b).

Потенциально бесконечное существует как экстенсивно или интенсивно бесконечное, то есть или в результате сложения, или в результате деления, или того и другого вместе. Отличие потенциально бесконечного от бесконечного актуально состоит в том, что первое всегда имеет дело с конечным и есть не что иное, как беспредельное движение по конечному. Каждый раз, имеем ли мы дело с экстенсивной бесконечностью, например в процессе счета, или с интен

-101-

сивной (в результате деления отрезка), мы на каждом из этапов движения по предмету получаем как угодно большую или как угодно малую, но всегда конечную величину. Тут как раз принцип непрерывности и оказывается принципом потенциальной бесконечности. «Вообще говоря, — пишет Аристотель, — бесконечное существует таким образом, что всегда берется иное и иное, и взятое всегда бывает конечным, но всегда разным и разным... Притом для величины это происходит с сохранением взятого, для времени и людей — вместе с их уничтожением, так однако, чтобы не было перерыва» (Физика, III, 6, 206b). Как понять смысл последнего замечания? В чем отличие величины от «времени и людей»? Это отличие Аристотель видит в том, что если величина, получаемая в результате деления, сохраняет в себе как бы «в снятом виде» пройденные этапы, становясь все меньше и меньше, то время, протекшее до настоящего момента, исчезает, не сохраняясь. Характерно, однако, что в этом последнем смысле, как говорит Аристотель, «бесконечное будет актуальным»10. Это замечание может ввести в заблуждение, если не принять во внимание оговорки Аристотеля, что «бесконечное как энтелехия» (т. е. осуществленное и в этом смысле актуальное) существует по совпадению; другими словами, актуальным будет «день или состязание», а не само бесконечное.

Итак, отвечая на вопрос о том, существует ли бесконечное, Аристотель формулирует один из кардинальных принципов своего учения: бесконечное существует потенциально, но не существует актуально. Иначе говоря, бесконечное не пребывает как нечто законченное, а всегда становится, возникает; оно не есть что-то действительное, а только возможное. Но отсюда с очевидностью следует, что бесконечное для Аристотеля есть материя, ибо именно материя определяется им с самого начала как возможность. «Бесконечное есть материя для завершенности величины и целое в потенции, а не актуально, оно Делимо путем отнятия и путем обращенного прибавления, а целым и ограниченным является не само по себе, а по-другому; и, поскольку оно бесконечно, не охватывает, а охватывается» (Физика, III, 6, 207а).

Хотя Аристотель и полемизирует с Платоном и пифагорейцами относительно логического и онтологического

-102-

статуса бесконечного, тем не менее, определяя бесконечное как нечто неопределенное (ибо материя сама по себе, без формы, есть нечто неопределенное), он остается на почве характерной для греков «боязни бесконечного»; и эта. почва является общей у него с другими греческими мыслителями, в том числе и с Платоном. Ведь и для Платона если нет единого, то ничто не может ни существовать, ни быть познаваемо, ибо беспредельное само по себе неуловимо для мышления. Аналогично рассуждает Аристотель, связывая бесконечное с материей (см.: Физика, Ш, 6,207а). И в самом деле, имея дело с потенциальной бесконечностью, мы всегда схватываем (то есть познаем) лишь конечное — бесконечность же выражается тут в том, что это конечное — «всегда иное и иное»11.

Любопытно, что Аристотель различает бесконечное от деления и бесконечное от прибавления (т. е. интенсивную и экстенсивную бесконечности) в одном отношении, а именно: бесконечное от прибавления не может превзойти всякую определенную величину, а бесконечное от деления — может. «Превзойти всякую величину путем прибавления невозможно даже потенциально, если только не будет по совпадению бесконечного, как энтелехии » (Физика, Ш, 6, 206b), о чем шла речь выше. Откуда же берется такое «неравенство» экстенсивной и интенсивной бесконечности? А дело в том, что бесконечное — это материя, оно не охватывает, а охватывается; в случае интенсивной бесконечности мы имеем определенную величину, допустим, отрезок известной длины; ограниченный двумя точками — границами, полагающими ему предел (границы эти суть момент формы), то есть охватывающими его. Здесь бесконечное охватывается своими «концами», деление происходит внутри охваченного. Напротив, когда речь идет об экстенсивной бесконечности, то величина неограниченно растет, и охватывать тут должна была бы уже не форма (ибо границы — формы — нет, она убегает в бесконечность), а сама материя, что, согласно ранее сказанному, невозможно.